ANALYSIS AND SOLUTION ALGORITHMS OF SEALIFT

" ROUTING AND SCHEDULING PROBLEMS:
FINAL REPORT

Harilaos N. Psaraftis
James B. Orlin
Daniel Bienstock
Paul M. Thompson

Sloan W.P. No. 1700-85 August 19

w0
W

This report describes a computer-assisted methodology for solving
the Operational Routing and Scheduling Problem of the Military Sealift
Command. This is the problem of assigning cargoes to available ships in an
emergency situation so that (a) cargoes reach their destinations within
prescribed time limits, (b) some prescribed system performance measure is
optimized and (c) other constraints are satisfied. The methodology is
well-suited to an (eventual) "expert system" approach to solving hard
combinatorial problems. Its principles are most appropriate for
large-scale dynamic allocation problems. Thus, the apgroach is modular,
hierarchical, interactive, adaptive and evolutionary. The computer program
implementing this methodology has been specifically designed to handle the
special complexities of this problem, while at the same time allowing for
future extensions amd enhancements. It decomposes the overall problem by
time and uses a network flow algorithms to optimally solve subproblems in
conjunction with a utility function that is a function of ship utilization,
timely delivery and cargoes, and port congestion.

This report critically assesses the structure and complexity of
this class of problems, describes the proposed methodology in detail, along
with an evaluation of its advantages over alternative approaches, presents
computational experience with the procedure and cutlines current and future
plans of this project.

FOREWCRD AND ACKNOWLEDGEMENTS

This work was performed at MIT under the supervision of the first
two authors (who have been the co-principal investigators of the moject),
ard under the assistance of the other two authors (who have been princimal
research assistants on the project). The work has been supported in part
by Contract No. N00016-83-K-0220 of the Office of Naval Research ard by an
internal grant of the MIT Center for Transportation Studies. This report
covers activities on this project up to May, 198S5.

The authors would like to acknowledge the contributions of several
individuals who assisted the project in various ways. These include
graduate students Kung-Yeun Jeng, Tai-Up Kim, and Vijay Singhal, who worked
as research assistants on early phases of the project, as well as
undergraduates Tom Berger and Charles Marge who volunteered their help
during the 1984-85 academic year. We would also like to thank Joe Ballou,
Kathy Wiswesser, Bob Elwell and (especially) Jon Raskin of the Military
Sealift Command for their wvaluable technical assistance, advice and
feedback on cur work. We gratefully acknowledge the administrative support
of Neal Glassman of ONR, Marcia Ryder of the MIT Operations Research Center
and Pat McCosco of the MIT Center for Transportation Studies. We are
grateful to Bob Simpson, Dennis Matthaisel, Boon-Chai Lee and Jang-Jei Jaw
of the MIT Flight Transportation Laboratory for the input they provided
into this project as it relates to routing and scheduling for the Military
Airlift Command. Last, but mot least, we would like to thank Karuna
Mohindra for the excellent work she has dore in typing the manuscript.

The opinions and views expressed in this report are solely those of
the authors anmd do not necessarily represent the position of the Military
Sealift Command.

TABLE OF OONTENTS page
Abstract 2
Foreword and Acknowledgements 3
Table of Contents 4
CHAPTER 1: EXECUTIVE SUMMARY 5

1.1 1Introduction: Project Objectives 5
1.2 Problem Structure and Complexity 6
1.3 Solution Approach: The MORSS Algorithm 9
1.4 Campatational Experience 16
1.5 Miscellaneous Other Activities 21
1.6 Current and Future Plans 22
CHAPTER 2: BACKGROUND ON THE PROBLEM 24
2.1 Introduction 24
2.2 Overview of the Real-World Problem
and Current Practices 26
2.3 Relationship to Other Problems 34
2.4 Definition of the Operational Problem; Assumptions 40
2.5 Generic Design Features of an Operational
Scheduling Algorithm (MIT Approach) 44
CHAPTER 3: THE MORSS ALGORITHM 483
3.1 Introduction 48
3.2 The Scheduling Subsystem 48
3.3 Assignment Utilities 53
3.3.1. Delivery Time Utility (For a Proposed Assignment) 54
3.3.2 A Proposed Assignment's Effect on Previously
Assigned Cargoes 56
3.3.3 A Proposed Assignment's Effect on the System's
Ship Resources 59
3.3.4 A Proposed Assignment's Effect on the System's
Port Resources 63
3.3.5 Total Assignment Utility 66
3.4 Solving the Assignment Problem 68
3.5 Permanent Assignments 71
3.6 Seed Assignments 73
CHAPTER 4: QWMPUTATIONAL EXPERIENCE 75
4.1 Introduction 5
4.2 The MSC Database 75
4.3 Gross Feasibility Analysis 76
4.4 MORSS Test Runs 83
CHAPTER 5: CONCLUDING REMARKS 107
5.1 Introduction 107
5.2 Other Project-Related Written Products 107
5.3 Directions for Further Research 109
REFERENCES 114
APPENDIX A: DATA STRUCTURES _ 117
APPENDIX B: THE MORSS COMPUTER PROGRAM 129

APPENDIX C: DESCRIPTION OF ARGUMENTS (F PROGRAMS 166 -

CHAPTER 1

EXECUTIVE SUMMARY

1.1 Introduction: Project Objectives

The purpose of this report is to describe research carried out at
MIT in conjunction with the project "Analysis and Solution Algorithms of
Sealift Routing and Scheduling Problems" (referred to fram now on as "the
MIT Sealift Routing and Scheduling ‘Project", or as "the Sealift Project",
or simply as "the project"). This report covers aétivities on the project
up to May, 1985.

Progress in the Sealift Project to date has been in accordance with
both the scientific objectives as set forth in the project's original
proposal and with the schedule that was proposed to achieve these
objectives (Psaraftis and Orlin, 1982). Specifically, an a short-term
basis we had poposed to (a) investigate a class of sealift routing and
scheduling problems, (b) develop, analyze amd test solution algorithms for
such problems and (c) work with the MSC and others so as to increase our
knowledge of these problems. On a longer-term basis, we had set forth the
following goals: (d) develop a procedure that could be ultimately
implemented within the scheduling subsystem of the SEASTRAT system of the
Military Sealift Command (MSC), (e) enhance the state of the art in the
solution of large-scale scheduling, distribution, and transportation
problems, and (f) advance the state of knowledge in interactive
user-friendly algorithms.

The principal product for ocur work thus far is what has been named

the MIT Ocean Routing and Scheduling System,or MORSS. MORSS is a computer

program that solves the Operational Routing and Scheduling Problem of the
MSC, that is, the problem of assigning cargoes to available ships in an
emergency Situation so that (a) cargoes reach their destinations within
frescribed time limits, (b) some prescribed system performance measure is
optimized and (c) other constraints are satisfied (details follow). As
will be seen shortly, MORSS possesses features that have been specifically
designed to allow the handling of the special complexities of this problem,
while at the same time allowing for future extensions and enhancements.

The rest of this chapter summarizes progress in the project to
date, whereas details of the work appear in the remaining chapters. We
begin by assessing the structure amd complexity of this class of
problems, an assessment which is critical as to which approach is more
suitable for such problems. We go on to describe the MORSS general
methodology, along with an evaluation of its advantages over alternative
apgroaches. ’I'hls chapter also briefly describes computational experience
with the MORSS algorithm, miscellaneous other accomplishments of the

project to date, and summarizes current and future plans.

1.2 Problem Structure and Complexity

An early attempt was first made by the MIT team to determine the
overall degree of complexity of the MSC Operational Routing and Scheduling
Problem, by relating its structure to other routing and scheduling prablems
that have been tackled in the mast. A timely assessment on this score was
considered important in order to guide subsequent algorithmic design

efforts. Specifically, we wished to assess early on in the project whether

there was potential for either exact (optimization) apmroaches or
optimization-based heuristics for the solution of this pxoblem. We should
note here that before this project was initiated we had examined exact,
mathematical programming formulations of several variants of the general
MSC problem (Bardjis, 1982). This work examined several alternative
objective functions, constraints, etc. Nevertheless, no further attempt
was made to develop solution approaches for those formulations, mainly
because of their complexity.

After a fair amount of analysis, we concluded that pursuing exact
aprroaches for this problem was not a particularly pramising direction.
Such an assessment can be justified on several grounds. For instance, it
is clear that a special (and quite restrictive) version of the MSC problem
is identical to the multi-vehicle many-to-many advance-request dial-a-ride
poblem. The latter is the problem of carrying customers from distinct
» origins to distinct destinations within specified pickup and delivery time
windows. Such problems can be considered as a special case of the MSC
problem, the case in which all ships and cargoes are assumed identical and
ro ship/cargo/port restrictions exist. The difficulty of the dial-a-ride
problem can be understood by the fact that about 15 years of research and
algorithm develomment for this problem have resulted in essentially only
one class of exact algorithms, developed for the single-vehicle problem and
viable only for very smail-sized problems (Psaraftis, 1980, 1983a).

There have also been several multi-vehicle dial-a-ride algorithms
developed, but all of them are heuristic. These include the work of groups
at the University of Maryland (Bodin and Sexton, 1982), Georgia Tech
(Jarvis et al, 1980), MIT (Jaw et al, 1982, 1984; Jaw, 1984) and others.

We investigated the potential of "transferring” to the MSC problem the
methodologies developed by these dial-a-ride projects. In particular, Jeng
(1984) investigated the potential of developing a sequential insertion
algorithms for the MSC using the technique developed for dial-a-ride in Jaw
et al, (1984), but the resulting algorithm was never implemented. We
finally decided against such adaptations, mainly because of the substantial
algorithm redesign that such extensions would involve.

' Another problem that resembles a special case of the MSC problem is
one analyzed extensively by Fisher et al (1982) for the routing of a fleet
of trucks in the chemical industry. Their method is based on a heuristic
that generates routes, a formulation as a set-packing problem amd a
solution using Lagrangian relaxation. Our original project proposal
(Psaraftis and Orlin, 1982) had suggested that we investigate the
suitability of such an approach for the MSC problem. We eventually decided
not to pirsue this apgroach in our project for several reasons. First, to
avoid duplication of effort with the peacetime tanker scheduling project
being carried out by Fisher and his team at the University of Pennsylvania
(project also sponsored by ONR). Second, because we thought that adapting
such an approach to the MSC operational problem (particularly to the
breakbulk component of it) would require (at a minimum) a nontrivial amount
of redesign, most of it heuristic, to allow the scheduler to handle the
special features of the problem, that is, dynamic updates of input data,
rolling horizon, nonhamogeneous cargoes, etc. In that respect, we decided
to go ahead with a procedure that would be, by design, tailored to the
dynamic nature of the MSC operational problem.

We also reviewed the work of Science Applications Inc (SAI, 1982)

in terms of suitability for the MSC operational problem. SAI developed a
heuristic algorithm for the "deliberate planning" version of the MSC
problem ("Scheduling Algorithm for Improving Lift", or SAIL). We have
concluded that the SAI algorithm would have to undergo extensive structural
modifications to be able to function in an operational setting (see also
Chapter 2). The main reasons for such a conclusion can be traced to the
anticipated difficulty in providing that procedure with the "restart”
capability and the appropriate data structure design that are necessary for

the MSC operational problem.

1.3 Solution Approach: The MORSS Algorithm

The MSC operational pxoblem is by its nature toco complex to be
solved by machine alone. As such it requires expert judgement as to how to
assess tradeoffs and how to schedule apgropriately. Our fundamental
methodology is well suited to an (eventual) "expert system" approach to
solving hard combinatorial problems. Thus, our focus is on "principles of
heuristic design” rather than on optijnization techniques for special
classes of problems.

The principles that we have focused on are most appropriate for
dynamic allocation problems. As we have already discussed in a previcus
progress report (Orlin and Psaraftis, 1983a) our approach is modular,
hierarchical, interactive, adaptive and evolutionary. These generic
features - which we consider essential for any algorithm that is developed
for the MSC operational problem - are also discussed in Chapter 3 of this
report. As a result of these heuristic design mrinciples and many other

considerations, we developed the MIT Ocean Routing and Scheduling System

-10-

(MORSS), a general overview of which goes as follows:

MORSS operates on a "rolling horizon" basis. Referri.ng to Figure
1.1, 1let T be the total duration of the overall scheduling process for the
problem at hand (that is, from the beginning of the process until all
cargoes have been delivered). Let also a and L be user inputs such that
O0<a<l and O<L<T.

MORSS decomposes the overall problem by time, using these
parameters., At each iteration it only assigns (to ships) cargoes whose
EPT's (earliest pickup times) fall within a "time window" of (ter & + L)
where tk is the beginning of the window at the (current) kth iteration and

L the length of the current time window. Assignments at the kth

iteration
are initially made on a tentative hasis, by taking into account, among
other things, (permanent) assignments already committed to at previous
iterations.

Once tentative assignments at the kth iteration are made, only
those assigned cargoes whose EPT's are between t, and t, + aL are eligible
for "permanent assignment", which is granted if they meet some additional
criteria (more details on the assignment/deassignment procedure will be
given shortly). All other cargoes, that is, all cargoes that have not been
assigned, plus all tentatively assigned cargoes whose EPT's are beyond tk +

aL, return to the pool of unassigned cargoes amd are examined at a future
iteration. Once assignments at iteration k become permanent, the time

s : [} " : s :
horizon is "rolled" to the interval (t:k +1r tk+l + L), with tk+l being the
earliest EPT of all yet unassigned cargoes. Note that tk+l need not be
smaller than tk + aL, but will not be greater than tk + L (see Figure 1.1),

barring the circumstance of no cargoes having EPT's between tk+l and t, + L.

-11-

ROLLING HORIZON

’acL__i

1]

ct

1 !

|
k t}(+1
a*L

horizon
| «—3at k-th

iteration

Figure 1.1

—

—t

time

-12-

Ore can see that in such a fashion there is always an overlap between
two consecutive iterations, and that by considering all cargoes within a
time window of length L (instead of a.L), MORSS has a "lock ahead"
capability. In that way, permanent assignments at the current iteration
take into account information on cargoes that will be handled in the
future. The values of a and L depend on T, the cargo demand rate and other
inpits, amd are subject to calibration. For a typical duration of T = 180
days, reasonable values for a and L might be a = 0.5 and L = 14 days, in
which case MORSS would "look" at two weeks of data at a time but would make
permanent assignments only cne week at a time.

Another concept central to MORSS is the concept of "seed"
assignments. This is a one-to-one assignment of some cargoes (seed
cargoes) to some ships (seed ships) early on in the scheduling process so
that a good starting solution is obtained. Such a solution serves as a
"skeleton" for the final schedule, which gradually evolves fram the seed
schedule as subsequent assignments are made at future iterations. Seed
selection is performed by solving an assignment problem whose objective
function is the maximization of the total "utility" of the assignment. For
each eligible seed cargo/ship pair, a special subroutine is called to
campute the "utility" of the corresponding prir (more on the utility
function below). The assignment problem is solved by using a novel network
flow algorithm developed by Orlin (1983a, 1983b) for solving the
transportation problem.

The same network flow algorithm is used each time a subsequent
assignment is made, that is, for every time window of the rolling horizon,

and until the end of the horizon. The main differences between seed

-13-

assignments and subsequent assignments are (a) seed assignments are made on
a e-to-one basis whereas in subsequent assignments more than one cargo
can be simultaneously assigned to a ship, and (b) subsequent assignments
take into account assignments already made at prior iterations by computing
not only the utility of a particular ship/cargo pair, but also the change
in utility ih all previous cargo assignments due to the addition of a new
cargo on a ship.

Adding a new cargo on a ship is done by insérting the origin and
destination of the cargo into the current schedule of the ship. To avoid
excessive computations, a simple heuristic determines a good pickup
insertion. Given this insertion, the total change in utility of the
schedule of the ship is computed for each feasible delivery insertion by
considering the following components:

(a) The change in total "delivery time utility" of all cargoes on
the ship. The delivery time utility of each cargo is assumed to be a "bell
shaped” decreasing function of the tardiness of that cargo (the tardiness
being defined as the delay of the cargo beyomd its latest delivery time if
the delay is positive, and zero otherwise).

(b) The change in "utility due to ship utilization amd schedule
flexibility". For each ship, such utility is assumed to be a two
dimensional "bell-shaped" decreasing function of the ratio of the ship's
residual capacity over its nominal capacity and an increasing function of
the total allowable slack in the ship's schedule.

(c) The change in "port congestion utility" due to both pickup and
delivery. For each port, such utility is assumed to be a decreasing

function of the port's utilization, defined as the ratio of ships visiting

-14-

the port over the capacity of the port, in ships.

The final choice for delivery insertion is the one that yields the
maximum overall utility.

Figure 1.2 exhibits the structure of MORSS. Only major modules of
the procedure are shown and "blown-up". Minor routines, which perform
arithmetic calculations, keep track of schedules and perform other database
management functions, are not shown. Also not shown is the way the data
structures of this process are organized and linked together. These have
been organized in a very robust cross-reference system, using
list-processing techniques. We believe that these sophisticated data
structures are an integral part of our contribution to a viable solution
methodology for the operational prcblem and serve a function which is
crucial for the ability of the scheduler to tackle the problem efficiently
(see Appendix A for more details). The code has been written in PASCAL,
whicb is superior to FORTRAN (and certainly COBOL) with respect to ease of
programming and handling of data structures. Further details on the MORSS
computer program can be found in Appendices B and C.

- MORSS cannot be directly compared with procedures such as SEACOP or
the SAI algorithm, which have been developed for the deliberate planning
(rather than the operational) MSC problem. Nevertheless, we conclude this
subsection with a summary of ways by which we feel MORSS has enhanced the
state of knowledge in solution tools for this specific class of problems

and in heuristic design for complex problems in general:

(@) MORSS provides a measure of overall system performance. The

actual utility achieved can be measured against the maximum possible

-15-

MORSS

Start

l

READIN

Reads in data and
initializes structures

DISPLAY

Displays data accord-
ing to a user-driven
neni

SEEDS

Performs Seed assign-
ments

DISPIAY

Y

SCHEDULE

Main body of MORSS
algorithm

!

DISPLAY

END

Figure 1.2

overall utility.

(b) MORSS incorporates queueing effects through port congestion
utility. A more refined representation of queueing delays can be readily
incorporated into the cargo lateness utility function (see alsb Chapter 3).

(c) MORSS is flexible. It can handle practically any number of
cargoes per ship. Its hierarchical and modular structure allows it to
adapt easily to the staggered availability times of different cargoes and
ships. The code is easily expandable and maintainable, and its design is
such that it can be easily "interrupted" to allow for interaction with the
human scheduler.

(d) MORSS can handle many prbblem complexities easily. In fact,
the addition of these may actually reduce subproblem size amd overall
running time. Such complexities include the presence of divisible and
indivisible cargoes, route restrictions, cargo/port or other shipping

constraints, changes in movements requirements, etc.

1.4 Canputational Experience

We have tested the MORSS algorithm with data supplied to us by the
MSC. The MSC database includes information on 505 cargoes, 232 ships and
26 ports.

Each of the cargoes is either a single item or a collection of
items that have a distinct POE ard a distinct POD. Inaddition, each cargo
has a preferred ship type, an Earliest Pickup Time (EPT), an Earliest
Delivery Time (EDT), and a Latest Delivery Time (LDT). Also known is that
cargo's Short Tons, its Measurement Tons and its Deck Area. The 505

cargoes are classified into 8 categories, according to preferred ship type:

These are breakbulk (193 cargoes), seatrain (13 cargoes), RO/RO (151
cargoes), self-sustaining container (54 cargoes), tanker (45 cargoes), and
barge carrier (25 cargoes) while 4 cargoes have an unspecified ship
freference.

Ships are classified into 3 fleet types and 6 ship types: The
fleet type codes are MSC controlled (38 ships), Ready reserve (38 ships)
and Sealift Readiness Program (156 ships). The ship type codes are
breakbulk (100 ships), seatrain (5 ships), RO/RO (5 ships), self-sustaining
container. (9 ships), tanker (25 ships) and barge carrier (18 ships).
Information on ships includes capacity (weight/volume/deck area), draft,
speed, cargo loading and unloading rates, as well as initial location.

Finally, the 26 ports of tha MSC database are classified as
follows: 12 are POE's, 5 are POD's, and the remaining 9 are both POE's and
PD's. All ports of the database are located in the United States, the
Panama Canal zone and the Pacific. Information on ports includes the
throughput characteristicgof their various berths and terminals. All
inter-port distances are also known.

Given a particular "problem instance” (that is, a set of prescribed
inputs for the MSC operational problem), we have assumed that the scheduler
would like to obtain a preliminary idea regarding whether available
resources are enough to satisfy the mrescribed cargo movement requirements.
If the opposite turns out to be the case, it would make little sense to
roceed with a detailed scheduling run, because most cargoes would be
delivered late. Instead, it would then make sense to relay infeasibility
information immediately to the chain of command "upstream”, so that either

the cargo movement requirements are modified, or additional resources are

-18-

made available, or some other measure is taken to alleviate this problem.

Gross feasibility analysis can be performed at various levels of
detail. At the simplest level, one can check whether the prescribed cargo
delivery time requirements alone are reasonable or unreasonable. Such a
test calculates the maximum time slack between each cargo's actual delivery
tihe amd its LDT under the optimistic assumption that the cargo leaves its
POE immediately at its EPT and travels directly to its POD. The same test
also calculates the minimum ship speed required if the cargo leaves its POE
pomptly, is delivered to its POD at its LDT and travels directly.

Applying suéh a test to all 193 cargoes belonging to the breakbulk
category showed that delivering all of these cargoes on time is virtually
impossible, irrespective of both actual ship resources and scheduling
strategy. Similar observations were made in the MSC database on virtually
all other cargo/ship categories. Fram our discussions with MSC personnel,
we understood that such infeasibility of the database could be attributed
in part to the "sanitization" process that was uséd to convert the database
from classified to unclassified. Other factors might be valid as well,
such as the facts that in practice a cargo's EPT and LDT are sometimes (if
not always) determined by two different (and sometimes unrelated) decision
processes. As a result, a cargo's LDT usually reflects neither that
cargo's availability at its POE, nor its POE/POD distance.

A second-level feasibility test takes also into account ship
resources as well. It formulates the feasibility problem as a
"transportation"” problem. It sets up a bipartite network, with supply
nodes representing ships, and demand nodes representing cargoes. The

optimal value of this problem is a lower bound on the actual total weighted

-19-

tardiness (ton-days late) that would incur under any actual allocation of
available ship to cargoes.

We chose a subset of the MSC database for the initial runs of MORSS
with certain goals in mind. For ease of analysis we wanted ships and
cargoes to be of campatible types. We desired the problem size to be at
once small enough to easily manage and comprehend, and large enough to
contain the.complexities of the MSC operational sealift problem. Finally,
we wanted a nontrivial problem, one which reflected to some extent the
infeasibility of some of the time windows in the MSC database.

Our objective in the initial comnputational study was twofold.
First, we wanted to verify that MORSS was operating correctly and in a
manner consistent with its design. Secondly, we desired to begin
calibration of the parameters of the model, that is, empirically test the
effect of seed assignments, cargo size and time window arrangement on the
quality of the owerall solution. Our procedure was also two-fold. First,-
we tésted MORSS on increasingly larger problems until we were satisfied
that the model was debugged. Then we began the calibration study, which we
now discuss.

The initial runs confirmed our intuition that seed assignments
greatly influence the quality of the final schedule. Our strategy was to
try a variety of seed assignments in order to gain a measure of the
quantitative effects of this key factor. These assignments were made
randomly at first, then varied to test various hypotheses about what
constitutes "good" seed assignments. In particular, we attempted to
improve the quality of the solution (e.g. decrease the number of

undelivered cargoes) by modifying the assignment of seeds fram one run to

-20-

the next.

From the runs of MORSS, (see details in Chapter 4), it became
evident that the performance of the system depends highly on the particular
data set being used. Many factors are involved. Boundary conditions,
cargo size, seed selection and interactions betrween large cargoes may
account for huch of the difficulty. 1In addition, the parameters involved
in the utility functions need detailed calibration themselves. To aid in
the analysis of the run, MORSS computes a large variety of statistics at
the emd of each run. These statistics are the measures by which we
evaluated the performance of the system. The most important of the cargo
statistics are the percentages of cargoes (delivered) on time and tons
(delivered) on time. These most clearly reflect the primary concern of the
MSC to deliver cargoes on time.

Among the ship-related statistics, route circuity, ship utilization
and percent of time spent in port are the most important. By "route
circuity”" we mean the ratio of the total distance traveled by a ship
divided by the sum of POE-POD distances for all cargoes carried by the
ship. Thus, a low circuity (less than half) means the ship carries many
cargoes most of the time, while a high circuity (more than'l.S) means the
ship carries few cargoes at a time, and takes a rather circuitous route,
probably deadheading a goad part of the time also. These measures are
important as indications of the efficiency at which the system operates.

Results of these runs show that ship utilization and the
percentage of tons delivered are mot correlated with the percentage of :
tons delivered on time. They also show a strong linear correlation between

the percentage of on-time cargoes and tons. The percentage of cargoes on

time seems close to being independent of the percentage delivered. These
preliminary results indicate that ship utilization is not a good
performance measure for problems with tight ar infeasible scheduling
requirements. This result will be checked more closely with a larger
feasible set of cargo movement requirements during the calibration
procedure.

In general, our initial MORSS runs appear to be interesting and
encouraging. The algorithm generates schedule patterns that seem to be
"clever" with respect to a particular cargo movement requirement. For
instance, roundtrips or other, more complicated routes are generated, and
large-scale cargoes are split. Further interpretation of these and other
test runs would feed back into further refining the algorithm.

1.5 Miscellaneous Other Activities

Other than the develomment of MORSS, there have been a number of
other activities related to the project:

(1) We have had four meetings with MSC personnel: Ore in
Washington, D.C. in May of 1983 where a general discussion (which included
the University of Pennsylvania team) was conducted, and three at MIT, in
December of 1983, in November of 1984 and in May of 1985, where
representatives of the MSC interacted with the MIT team on topics related
to the algorithm and the MSC database. The last two meetings included
computer demonstrations by the MIT team of versions of the MORSS algorithm.

(2) In March of 1984 the MIT team presented its work at a workshop
organized by the MSC ard the Joint Deployment Agency, in Tampa, Florida.
The workshop included presentations by the University of Pennsylvania and

Georgia Tech groups (see also Jarvis, et al, 1982) on their pojects.

R

-22-

(3) Progress in the project has been alsoc presented at three
ORSA/TIMS meetings: One in Orlando (Orlin and Psaraftis, 1983b), one in
San Francisco (Orlin and Psaraftis, 1984), and one in Boston (Psaraftis et
al, 1985).

(4) A student M.Sc. thesis was written on the solution of a version
of the MSC problem using an insertion algorithm (Jeng, 1984).

(5) A PhD thesis was submitted on the develomment and analysis of
certain algorithms, exact and heuristic, for "analyzable" version of the
MSC problem (Kim, 1985). A paper based on ﬁhis work was presented at the
EURO-VIII Conference in Bologna, Italy (Kim et al, 1985).

(6) An annotated bibliography of about 70 references in this
general problem area was prepared (Thompson, 1983). These references are
maintained in the MIT project library.

(7) Finally, contacts have been maintained with a sister moject,
sponsored by the Military Airlift Command (MAC), at MIT's Flight
Transportation Laboratory. Although the scheduling problems of MSC amd MAC
and the scopes of the two projects are different, both sides are interested
in exploring the potential for transférri:g scheduling methodologies from

one project to the other.

1.6 Current and Future Plans

Further research directions entail six tasks: (1) investigate and
calibrate alternative utility functions, (2) investigate cargo assignment
interactions, (3) develop more sophisticated seed selection methods, (4)
model queueing effects at ports, (5) undertake sensitivity analysis and

(6) further test the algorithm and enhance its user-friendly features. At

~23<

r the MIT team ncentrating on
Sks ing lefe for future Bhase of the
o of these task 1S given in

-24-

CHAPTER 2

BACKGROUND ON THE PROBLIM

2.1 Introduction

Before cne can attempt to solve a problem, one must first define
it. To that end, the MIT project team has spent a considerable amount of
effort in the early rhases of the project in arder to better understand the
structure and complexity of the problem at hand. A second, parallel effort
concerned the definition of "the problem" in clear ahd explicit rather than
vague or ambiguous terms.

As in many complex problems, ambiguity in the MSC problem ranges
from issues related to lack of a clear definition of the problem
objective(s) or constraints, to issues such as whether a specific problem
parameter must be considered a decision variable or an exogenous user
input. To state a few examples, issues that have to be addressed to
resolve ambiguity include (but are not limited to) the following: Does the
MSC wish to maximize the number of cargoes delivered on time, or minimize
the total ton-days of cargo delivered late? Does one allow a cargo to be
split? Does cne consider due dates as "soft" or as "hard" constraints?
Does cne, in fact, consider due dates as decision variables in this
froblem, or does one take them as exogenous user inputs? (With respect to
this last issue, it is clear that somebody in the whole chain of command in
sealift scheduling somehow makes a decision regarding what the due date of
a cargo should be; so the question is whether this decision is part of our
problem). Does one similarly consider ports of embarkation or debarkation

as decision variables, or take them again as exogenous user inputs? It is

-25-

clear that the resolution of such ambiguities is paramount in our ability
to create a realistic model for the real-world problem and ultimately solve
the problem.

Both efforts described above (that is, ocomplexity assessment and
problem definition) were undertaken in parallel because we wished to come
up with a problem definition that was both realistic and at the same time
well-understood in terms of structure and complexity. We paid particular
attention to the identification of similarities between the problem at
hand and other problems that were tackled in the past, so that we could
take maximum advantage of known techniques that might be transferred to
this problem.

The parpose of this chapter is to describe the results of our
assessment on that score, and, in a way, pat the problem at hand into the
proper perspective. Such a perspective forms the basis of the development
of the MORSS solution procedure that will be described in Chapter 3. An
overview of the real-world mroblem and current practices is presented in
- Section 2.2, Section 2.3 reviews similarities and differences between this
roblem and other 4related problems and explores the possibilities of
methodology transfer among these problems. Section 2.3 specifies the
version of the problem to be examined and distinguishes between parameters
that are explicit decision variables in this analysis, and other variables,
which are exogenous user inputs for the version of the problem at hand.
Finally, Section 2.5 sets forth a set of generic design features that a
camputer -assisted procedure should possess in order to be able to solve the
MSC operational problem, amd comments on the suitability of the SAT
algorithm for solving that problem.

-26-

2.1 Overview of the RealWorld Problem and Current Practices

The Military Sealift Command (MSC) is the agency responsible for
providing sealift capability for the Department of Defense. Three of its
most important missions according to Scott (1982) are the following:

(1) Provide peacetime logistical sealift support of military
forces worldwide;

(2) Develop plans for the expansion of the peacetimé sealift fleet
to support military contingency operations amd mobilization. And

(3) Acquire and operate this expanded fleet to provide contingency
ard mobilization sealift support of military forces worldwide.

The MSC scheduling activities in support of peacetime logistical
support are similar to those accomplished by commercial liner companies and
by chartered shipping operators. The problem is to size the fleet at the
optimum level amd to schedule ships to transport cargoes among ports most
economically.

The scheduling requirements for the MSC contingency and
mobilization mission areas are different from those during peacetime
operations. Besides involving a larger mumber of ships and cargoes, (this
number can be as high as several thousard cargoes and 1,500 ships) the
ability to deliver cargo on time now becames paramount. Under such a
setting, the objective of the MSC is to ensure that all cargo, dry and
liquid, arrive at destination as planned.

The key objective of MSC's strategic planning of sealift operations
for contingency and mobilization situations is to move military forces and

supplies to the required location during a period of potential or actual

-27-

conflict within a required time. For this reason, MSC has initiated the
develoment of a comprehensive methodology, SEASTRAT, to perform the
scheduling of MSC transportation resources ard thereby evaluate the
feasibility of meeting mobilization requirements. At pesent, SEASTRAT is
intended to assist planners solve the "deliberate planning” version of
the MSC routing and scheduling problem. This deliberate planning problem
significantly differs from the MSC "operational” scheduling problem,
which is the problem on which the MIT project has focused.

Before we proceed with SEASTRAT, we highlight the similarities and
, differences between these two classes of problems:

Both the deliberate planning problem and the operational scheduling
problem call for an assignment of cargoes to ships so as to satisfy "as
best as possible" the cargo movement requirements amd the due dates that
have been specified as part of an "Operational Plan". In the deliberate
planning problem, inputs are generated according to a plausible scenario
that represents a contingency that may arise in a part of the world. In
the operational problem, inputs correspond to a real scenario that has
actually accurred and evolves in time.

Despite their conceptual similarities (e.g. both problems
essentially call for a "reasonable,”" "good," or "optimal" allocation of
cargoes on ships to satisfy the due dates that have been specified), the
two problems have significant differences: For instance, the emphasis in
the deliberate planning problem places more emphasis on the determination
of the minimum number of ships that are necessary for the successful
execution of a plan, while the operational problem emphasizes the efficient

use of available ships to meet the due dates with the minimum amount of

-28-

delay. The deliberate planning problem involves relatively long time
horizons (and thus involves a greater degree of uncertainty; initial ship
positions, queueing delays at ports, and other factors are either not known
with certainty or cannot be predicted with accuracy) while the operational
problem is typically of shorter duration (and thus involves a lower degree
of uncertainty; most of the inputs are either known a priori - e.q.
positions or availabilities of ships, or become eventually known to the
decision-maker along the course of events)., Information in a deliberate
planning problem is typically highly aggregate, while in an operational
problem one is typically faced with highly detailed information on the
poblem., Several other differences exist, the enumératim of which is
outside the scope of this report. In our opinion, the most significant
conceptual difference between the two problems is as follows. Whereas the
data to the deliberate planning problem is specified in advance and is
static, the input data of the operational problem changes dynamically in
time, with the word "dynamically" interpreted as "at the same time the
decision-making process (whether automated, manual, or man-machine) is
taking place". For instance, new cargo requirements may be imposed a week
after the occcurrence of the scenario, that is, after the initial
cargo-to-ship allocation decisions have been made. Or, certain ships
and/or ports may cease to became operational for various reasons
(malfunction, attrition, etc). Many other examples can be devised. It is
therefore clear that special consideration should be given to the
scheduling methodology that "solves" the operational problem, so that its
dynamic nature is taken into account. Similarly, extreme caution should be

exercised in attempting to "transfer" to the operational problem

~20-

methodologies that have been developed to solve the deliberate planning
problem (more on this point later).

With these considerations in mind, we come back to SEASTRAT and
describe how it relates to current MSC practices. The objective of
SEASTRAT is to schedule ships and cargo transport so as to deliver cargo to
the required ports of debarkation within the proper time (see SEASTRAT,
1981). The ship routes amd schedules must be consistent with initial cargo
and ship locations, port capacities, cargo and ship types so as to provide
a feasible (and hopefully "optimal") solution to the scheduling problem.

SEASTRAT will eventﬁally replace the Strategic Sealift Contingency
Planning (SEACOP) system. SEACOP is, by today's standards, a rather old |
system, run for the first time on MSC's Honeywell 1200 computer in 1972. It
was designed to perform detailed planning. It takes into account precise
ship characteristic data (e.g. exact speed, capacity, etc.) and produces a
detailed shipping schedule. SEACOP was not readily accepted by the
planning community, which was at that time ariented to gross feasibility
planning. The planning rhilosophy has since changed, ard the detailed
output of SEACOP corresponds to current requirements. However, there are a
number of deficiencies in the system that cause problems. The operation of
the system consumes considerable computer time (up to forty hours for large
plans) ; there is no restart capability; the loading amd scheduling
algorithms lack credibility. There is also a recognized need for an
automated transportation planning, which is not provided by SEACOP.

According to Kaskin (1981) most of the problems that analysts have
discovered about SEACOP are due to deficiencies in the logic within the

Schedular Subsystem. There are also several other problems that are the

-30-

result of defects in the overall system design and implementation.

When a Commander -in-Chief develope an Operational Plan, he also
establishes a Time-Phased Force Deployment Data (TPFDD) file (see SEASTRAT,
1981). The file contains information about what cargo is to be transported
from what port of embarkation to what port of debarkation, with earliest
and latest arrival dates specified.

Currently the MSC processes the TPFDD by means of the SEACOP
system. The TPFDD is edited for validity of data, and movement
requirements are aggregated on the basis of common cargo type, ports, and
time requiremerts. The system then calculates ship availability by taking
into account the level of mobilization, determining what ships are usable
under that level (e.g. owned fleet, available at all times; NATO fleet,
available only in NATO plans; etc), amd calculating the time required to
travel to various ports and discharge their cargo. Feasibility is then
assessed by simulating the loading of ships and the transport of goods, and
then determining which loads were not scheduled or arrived later.

Under the present system, the automated feasibility analysis must
be improved by hand manipulation (see SEASTRAT, 1981). For example, one of
SEACOP's deficiencies is that it can only load ten aggregated cargoes onto
a ship, no matter how small the resulting load is. It is therefore obvious
that a process of hand-scheduling cargo into the empty space or underloaded
ships may show a plan to be more nearly feasible than the model has
indicated. Some analysts try to improve the detailed schedules produced by
SEACOP by hand-rescheduling or by proposing changes in times associated
with specific loads. However, this approach becomes impractical with large

plans. Other analysts make a broader set of suggestions about relocation

-31-

or rescheduling of cargoes, after looking at summary information output by
the model (number of shiploads per port, etc.). An analyst can prepare
specific changes to the TPFDD amd run SEACOP again to check feasibility of
the modified transportation requirements. However, due to the SEACOP's
inefficiency (up to forty hours required for large plans), any process of
successive approximation to a feasible plan is severely limited.

A more accurate ard more efficient methad for conducting
feasibility analysis is needed to be employed by SEASTRAT. This method
must be able to identify which requirements result in infeasibility. 1In
this way, changes that would render a plah feasible could be suggested.
Such changes could include changing the level of mobilization, increasing
shipping capacity in specified ways, suggesting a better distribution of
cargoes among ports of embarkation, etc. If this methad for suggesting
changes involves successive approximations (a repeated sequence of
adjusting the TPFDD amd performing feasibility analysis), then the
feasibility analysis must be a quick process that can be repeated several
times without affecting the overall analysis schedule.

Unfortunately, the schedules produced by SEACOP are rot realistic.
According to Kaskin (1981) "too many ships with less than 50% utilization
deliver their cargoes late." This poor performance has to do with the
design of SEACOP's Schedular Subsystem, as we shall see below. The
Schedular assigns a cargo movement requirement from the TPFDD file and
scores each ship eligible to carry the requirement to the port of
debarkation, by using a simple formula. (An eligible ship is one that
meets the port of debarkation draft amd length restrictions, that has

sufficient boom capacity, and that will allow the ship to meet its latest

-32-

arrival date). The score of each eligible ship depends on the ship's
expected arrival date to the port of debarkation and on the ship's
utilization factor (i.e., capacity of ship utilized as a fraction of ship's
total capacity). The eligible ship with the lowest score is assigned the
cargo.

SEACOP's scoring formula does mot schedule ships against movement
requirements in a realistic manner. It determines the fate of a ship upon
assignment of its first cargo without considering other available cargoces.
Additionally, if a cargo is assigned to a ship that does not, after all
cargo movement requirements are considered, have sufficient cargo to be
commited to sail, then such cargo is not sent. In reality, one could
possibly reassign the cargo to ancther ship that might arrive a little
late. Another flaw, mentioned already, is that the Schedular currently
does ot allow more than ten movement requirements to be assigned to the
same ship. Since movement requirements are often small in size, ten loads
may rot be enough to fill the ship above the minimum required for that ship
to sail. Thus, the cargo will become "frustrated".

Kaskin in his Point Paper concerning suggestions for SEACOP's

improvement (Kaskin, 1981) states the following:
"The overall result of the above deficiencies is that SEACOP produces

unacceptable schedules for most plans. This can be verified by
talking with the analysts who use the model daily. Unfortunately,
there is presently no way to determine how poor the SEACOP schedules
really are. SEACOP has never been validated. That is, SEACOP's
outputs have never been compared with the best schedule that human

operators might come up with, given the same ships and movement

-33-

requirements”.

To date, the most significant algorithmic development effort in
conjunction with SEASTRAT (that is, with the delibe'rate planning version of
the moblem) has been the work of Science Applications, Inc. (SAI, 1982).
SAI developed an algorithm called "Scheduling Algorithm for Improving Lift"
(SAIL).

SAT formulated a transportation network model to solve the
deliberate planning problem. The model was designed to minimize total
system costs (the cost of the ship use and penalties for lateness of cargo
delivery represented as a function of the cargo/ship assignments) subject
to constraints which required that all cargo be delivered and ship capacity
not be exceeded. The objective function coefficients incorporated all
system costs, including those of delays. Then the problem was solved by
successive iterations dver the values of those coefficients, using a
well-known solution algorithm for the transportation problem, until no
further improvement could be made. Throughout the procedure, time
constraints were regarded as being "soft". (If a time window can be
violated, it is referred to as a "soft" time constraint). The methad of
updating cost coefficients and assigning seed cargoes was also heuristic.

A detailed description of the SAI methodology is beyond the scope
of this report and can be found in SAI (1982). However, a crucial question
that the MIT team felt obliged to answer was to what extent the SAT
methodology, which was developed for the deliberate planning problem, could
be "transferred" to the operational problem. This report addresses this
very important issue m Section 2.5.

We conclude this section by noting that to date, there has been no

-34~

counterpart of SEACOP or the SAI algorithm for the operational MSC problem.
Thus, if an actual mobilization situation were to occur, detailed sealift

scheduling would have to be done by hand.

2.3 Relationship to Other Problems

To gain further insight into the structure of the MSC problem, we
now review some problems in other environments that are conceptually
related to this problem, and thus, conceivably are promising fram a
methodological viewpoint.

(1) The Dial-A-Ride Problem

The dial-a-ride problem is the problem of carrying customers from
distinct origins to distinct destinations within specified pickup and
delivery time windows. The problem can be considered as a restricted
version of the MSC problem, in which all ships and cargoes are assumed
identical and no ship/cargo/port restrictions exist. Whereas it is clear
that such a restriction is unrealistic, we ocutline below the main
algorithmic develomments with respect to dial-a-ride over the past decade.

Several approaches have been developed for solving versions of the
dial-a-ride problem. Wilson et al, (1976, 1977) and Bodin and Sexton
(1982) developed heuristic algorithms for practical applications.
Psaraftis (1980, 1983a, 1983b, 1983c) analyzed and developed exact and
heuristic algorithms for several different versions of the problem.
Recently, Jaw et al (1982, 1984) developed heuristic algorithms for
multi-vehicle problems with time constraints.

The work of Psaraftis (1983a) was an exact dynamic programming

algorithm with forward recursion, whose time bound was O(n23n) for a single

-35-

vehicle problem of n customers. The objective of the problem was to
minimize the time needed to service all customers and the algorithm
identified infeasible (with respect to time constraints) problem instances.

Bodin and Sexton (1982) formulated a mixed-integer linear
programming problem for a one-sided time constraint (desired delivery time)
problem and developed an algorithm based on Benders' decomposition for
solving it. The objective was to minimize the total "inconvenience"
customers may experience due to excess ride time and deviation from the
desired delivery time. The initial solution for the algorithm was obtained
by the "space-time heuristic", which was a variant of the "nearest
neighbor" heuristic in which the "measure of closeness" was rerresented by
a parameter called "space-time separation”. Later, Bodin and Sexton,
(1982b) developed a procedure to solve the multi-vehicle version of the
problem. In this procedure, a "swapper" algorithm was used to improve
vehicle clusters and the "space-time" heuristic was used as a single
vehicle routing subroutine.

. Jaw et al (1982) developad an algorithm for solving the
multi-vehicle dial-a-ride problem with "soft" time-window constraints. The
objective of the problem was to develop a set of routes for a fleet of
vehicles serving customers who have to be picked up from specified origins
and delivered to specified destinations so that overall vehicle
productivity was maximized. The algorithm consisted of three successive
and distinct steps: "grouping", "clustering", and "routing". Grouping
divided customers into "time groups" on the basis of their desired pickup
and delivery times. Clustering separated customers of each time group into

"clusters” and assigns vehicles to serve each cluster. "Routing" generated

-36-

routes for each individual vehicle to serve every cluster in turn and for
every time group.

In Jaw et al (1984), the same authors developed an "insertion"
algorithm for the "hard-time-constraint" version of the problem. In this
version, the solution which violates any of given time constraints is
regarded as "infeasible". The algorithm sequences the customers in
ascending order of their earliest pickup times. Then, customers are
assigned to different vehicles based on certain criteria. The current
requests are inserted into the previously built-up tour of each vehicle in
service. Among the feasible insertions, the one which optimizes the
objective value is chosen as the best insertion. An insertion is
infeasible if, as a result, any service constraints are violated for the
current request or for any of the customers already an board the vehicle.

This procedure has some potential for solving the sealift problem.
In fact, Jeng (1984) investigated the potential of "transferring" this
methodology by developing the framework for a sequential insertion
algorithm for the MSC problem. |

It is important to point out that, with the exception of the
dynamic p@ogramming approach developed for the single-vehicle problem and
which is viable only for very small problems, all other dial-a-ride
algorithms have been heuristic, especially the ones developed for the
multi-vehicle problem, Given the fact that the MSC problem is a
generalization of (and hence, more difficult than) the dial-a-ride problem,
it is unlikely that the general version of the MSC scheduling problem can
be eventually solved efficiently by an exact (optimization) approach.

Moreover, any heuristic (i.e. approximate) methodology that is developed

for this same general version of the MSC scheduling problem is very
unlikely to lend itself to worst-case or average-case analysis. Such
analyses measure how good (in terms of deviation fram the theoretical
optimum) a particular heuristic algorithm is on a worst-case basis or on
the average (respectively), and can be typically developed for simpler,
more restrictive versions of a given problem. For the MSC case, such
analyses are very interesting fram a theoretical point of view, but less
interesting from a practical point of view because the versions that are
amenable to such an analysis are very restrictive. In any event, such
versions have been systematically analyzed in the Doctoral dissertation of
Kim (1985) and are briefly reviewed in Chapter 5 of this report.

(2) The Bulk Delivery Scheduling Problem

Another problem that resembles a special case of the MSC problem is
one analyzed extensively by Fisher et al (1982). They considered the
problem of scheduling a fleet of vehicles delivering a bulk product stored
at a central depot. The objective of the problem was to maximize the value
of the product delivered to all customers, less the fleet operating costs
incurred in making these deliveries. They developed a mixed-integer
programming formulation of the problem amd a solution algorithm based on
Lagrangian relaxation and a multiplier adjustment method.

The algorithm first heuristically generates a menu of possible
vehicle routes taking into account the geographical location of customers,
and the amounts of demands and truckloads. A route is excluded if the
customers on the route are spread cut through a large geographical area or
if the amount of the product that could be delivered to the customers on

the route is significantly less or significantly more than a truckload.

-38-

A model is formulated to select optimally from this mem of
possible routes a subset that could actually be driven, specifying the time
each route should start, the vehicler to be used, ard the amount to be
delivered to each customer on the route. In that case, the request can
either be turned down or another back-up vehicle can be added into the
system. Also, the algorithm has been modified to accept vehicle capacity
constraints. Then, as a technique for solving the problem, a Lagrangian
relaxation method is used introducing a multiplier adjustment method.

The Lagrangian relaxation methad is an important computational
technique for solving certain mixed-integer programming problems. The
rationale underlying the methad is the fact that many hard combinatorial
problems can be viewed as easy problems complicated by a relatively small
set of side constraints. Dualizing these side constraints (weighing them
by multipliers and placing them in the objective function) produces a
Lagrangian problem that is easy to solve ard whose optimal value is an
upper bound (for maximization problems) on the optimal value of the
original problem. Thus, it can be used in place of linear programming
relaxation to provide bounds in a branch and bound algorithm.

Recently, these same authors have adapted this method to the
"peacetime tanker scheduling" problem of the MSC (Fisher and Rosenwein
1984). This problem can be considered as counterpart of the MSC emergency
scheduling problem in the sense that the objective in peacetime operations
is similar to that of a commercial shipping company (i.e. minimization of
costs) rather than the timely delivery of the cargo.

One key conceptual difference between the truck problem and the

tanker problem is the fact that whereas each truck's trip starts and ends

~39-

at the same prescribed point (the depot), the endpoints of each of the
tankers in the fleet are neither the same, nor necessarily prescribed in
advance. Tankers do not have to return to a central depot at the erd of
their trip. Indeed, their trip may consist of an open-ended sequence of
port visits., Fisher's team handled this variation from their original
model by imposing a limit on the amount of idle time each tanker could wait
at each port amd by decomposing the problem and looking at one "time
horizon" at a time. For instance, they ocould schedule ships within the
next (say) 60 days (that is, ignoring scheduling demands from day 61 on)
with the additional requirement that no ship should idle at any port by
more than (say) a week. Such a treatment served to limit the number of
schedules generated by the schedule generator to a manageable number.
Fisher's team reported satisfactory computational experience with
this procedure for a series of test problems (Fisher et al, 1984). This
suggests that this approach is certainly promising for the peacetime tanker
scheduling problem of the MSC. However, the extent to which this
methodology can be extended to solve the MSC operational problem is less
clear. The MSC operational problem involves in addition to oil (which is a
bulk commodity) general cargo as well, either containerized or breakbulk.
This means that a ship is likely to carry a number of different cargoes at
the same time. This factor alone may make the number of schedules needed
to be generated by the schedule generator prohibitively large. Moreover,
it is not clear how this procedure can handle dynamic updates of input
data. Thus, in addition to a significant amount of new reserch that would
have to be undertaken to addfess these amd other issues, we conjecture that

this approach would have to undergo a significant degree of redesign, most

-40-

of it heuristic, to be tailored to the features of the MSC operational

problem,

2.4 Definition of the Operational Problem; Assumptions

As stated in the project proposal (Psaraftis and Orlin, 1982), an
oversimplified and generic definition of the MSC operational routing and
scheduling problem is the following:

Given a set of available ships (located at any given point in time at
given points somewhere in the ocean) and a set of cargoes (awaiting
pickup at given ports of embarkation (POE's) and requiring delivery at
given ports of debarkation (POD's) and within specified time limits)
that is the allocation of cargoes to available ships that "optimizes"
a prescribed delay-related measure of performance?

After extensive discussions both within the MIT team and with MSC
personnel, the following additional clarifying assumptions have been made
regarding the definition of the problem at hand:

(1) The problem is dynamic in nature, that is, information on inputs
such as cargoes, ships, and ports may (but does not necessarily have to)
become available to the decision-maker (the scheduler) concurrently with
the decision-making process. Previous information may be updated.

(2) The problem is deterministic in the sense that no probabilistic
information on the input variables of the problem is available. Issues
such as queueing and congestion at ports which are inherently probabilistic
are definitely taken into consideration, but in an approximate, and
deterministic fashion at this stage of the research. As will be described

in Chapter 3 the queueing process is a very important area for further

-41-

research, (see also Chapter 5).

(3) We assume that all decisions concerning the mode of transport of a
particular cargo have been already made at the strategic level. That is,
this problem is mot concerned with deciding on whether a particular cargo
should be carried by the MSC or by MAC (the Military Airlift Command).
Instead, the problem looks only at cargoes that have been already assigned
to the MSC for transport. Similarly, this problem is not concerned with
interactions between the MSC and other Transportation Operating Agencies of
the Department of Defense, such as MIMC (the Military Traffic Management
Command) , or others. We assume that for each cargo, its POE, its POD, and
the time limits within which its transport should take place are user
inputs rather than decision variables. In other words, deciding which is
the most approrriate POE for a particular cargo, or determining when this
cargo is available at its POE or due at its POD are not part of the problem
at hand. These important decision issues are currently being investigated
by a Georgia Tech poject, sponsored by the Joint Deployment Agency (see
Jarvis et al, 1982). These issues are outsuie the scope of our moject.
(4) We allow for multiple types of ships and cargoes (i.e. tankers,
ro/ro ships, breakbulk, etc.), as well as for the splitting of a cargo
(usually due to size), but our methodology does rot consider transfers of

cargoes among ships. The implication of this is that feeder operations

which would bring a certain cargo by ship into a certain port, to be picked
up subsequently by another ship, are not modeled by cur problem. We only
consider such cargoes (if any) after they have arrived (by whatever mode)
at their designated PCE's.

(5) We assume that each ship can carry any number of distinct cargoes

-42~

(as long as they are compatible amd its capacity is not exceeded) and that
it can make any number of stops on its schedule (to pick up and/or deliver
other cargoes). Pickups and deliveries can be interspersed along the
route, and multiple roundtrips or triangular routes can be considered.

(6) This problem does not consider ship convoys, nor cargo precedence
constraints of the form "this cargo should be picked up before this other
cargo is delivered" or "cargo # 37 should arrive before both cargoes # 1
and # 48 arrive." Issues such as the above might be very important in
practice, but were left for a future phase of this work.

(7) Each cargo is assumed to have a POE, a POD, an Earliest Pickup Time
(EPT), an Earliest Delivery Time (EDT) and a Latest Delivery Time (LDT).
Also the data include the direct distance between that cargo's PCE and POD,
its weight, volume and surface area. After extensive discussions with MSC
personnel, we decided that EPT's and EDT's should be considered "hard"
constraints, whereas LDT's should be considered "soft". This means that a
cargo cannot be picked up before it becomes available at its POE (at its
EPT) and also cannot be delivered at its POD before its EDT. This last
requirement was imposed because there might be valid logistical reasons on
why a certain cargo cannot be delivered earlier than a prescribed time
(lack of adequate support facilities etc.). With regard to a cargo's LDT,
we decided that it should be considered a "soft" constraint (hence, is
amenable to violation) because we judged that it would be better to deliver
a cargo late (especially if it is only a few days late) than not deliver it
at all (which could happen if this constraint also were "hard"). At the
same time, and so as to discourage late deliveries, we decided to

incorporate a term into our objective function that penalizes cargo

-43-

tardiness (see also Chapter 3). Our model also allows for the possibility of a
cargo not being delivered. In such an event, that cargo would be "flagged”,
and its due date might subsequently be readjusted after an interaction
between the MSC and the authorities responsible for issuing the cargo
movement requirements.

(8) The data for each ship includes quantities such as capacity
(weight/volume/deck area), draft, speed, cargo handling capacity and
initial location. The data for each port includes the draft and the
throughput characteristics of its various berths and terminals.

(9) Finally, we briefly discuss the objective function of this poblem
(more details will be presented in Chapter 3). From our discussion with
MSC personnel we concluded that there are three [rimary events that are
likely to create problems in any given operational scheduling situation,
and hence, should be explictly considered by aur approach: (a) Late
delivery of cargoes, (b) low ship utilization and (c) severe port
congestion. The occurrence of any cane of the above three events is
considered an undesirable outcome in any operational situation, and
therefore should be explicitly penalized. In SEACOP, (a) and (b) have been
recognized to cause problems (Kaskin, 1981), whereas (c) has been
completely neglected. Of course, in reality (c) is ultimately reflected
into (a). However, we thought important to consider queueing and
congestion at ports explicitly rather than implicitly because of the
broader ramifications that this issue could create in the logistics of the
overall problem. We present the modeling of these three criteria in

Chapter 3.

-44-

2.5 Generic Design Features of an Operational Scheduling

Algorithm (MIT Aproach)

Based on all the previous considerations, amd aftet a significant
degree of interaction with MSC personnel, the MIT team came up with a set
of generic design features that a compter-assisted procedure should
possess in order to be able to solve the MSC operational routing and
scheduling problem. These features are the following: ,

(1) It is essential that such an algorithm be interactive. One should
always have the "human in the loop" and enable him/her to override the
canputer at will. Various options should be designed, ranging from a
completely "manual” approach where all major allocation decisions are made
by the human operator, to more sophisticated modes where the computer deals
with more difficult problems (e.g. routing) but still allows user
discretion for "key" decisions, or perhaps even to a fully automated mode
where the computer makes a number of "default" assumptions and solves the
whole problem with no user intervention.

(2) The algorithm should have a "restart" capability, that is, should
be able to efficiently update schedules at any time within the execution of
a plan, without compromising decisions already made. In particular, new
cargoes should be able to be "inserted" quickly into existing schedules,
cargoes or ships that are causing problems should be able to be "deleted",
etc. Efficient list-processing techniques (available at such programming
languages as PASCAL or PL1) should be implemented for fast database
manipilations.

(3) The algorithm should be hierarchically designed, that is, allow the

user to start the decision-making process with "first-cut” gross

-45-

feasibility analyses (possibly in several levels of aggregation) amd then
proceed with aggregate scheduling (that takes into account anly the most
significant and best-established problem factors, but ignores or simplifies
other factors that are difficult to nail down - such as queueing delays).
Ultimately, the program would solve the whole problem where all factors,
from the most aggregate to the most detailed, are incorporated. Such a
feature is considered important because many significant insights may be
obtainable without having to solve the whole problem (e.g. a "quick and
dirty" feasibility analysis may establish that some due dates are
infeasible and hence allow the user to inquire for adjustments before
further decisions are made).

(4) Finally, we consider it important that this algori&m be
user-friendly. In particular, graphics aids are significant features that
can enhance the efficiency of the man-machine interaction.

With the above considerations in mind, let us now reconsider the
SAI methodology outlined in Section 2.2. It is of course fair to say that
the SAT algorithm was mot designed for the operational problem and
therefore it would be unreasonable to expect that approach to work well in
a setting different from the one it was developed for.

A detailed description of the SAI methodology is beyond the scope
of this report. As stated éarlier, SAI essentially formulates the
deliberate planning problem as a "transportation” problem whose objective
function incorporates all system costs, including those of delays, and
"solves" that problem by successive approximations in the objective
function. Those approximations are necessary since the actual objective

function is (very) nonlinear while the "transportation" algorithm

-46-

can only handle linear forms. However, it is unlikely that final
convergence of the assumed linear form to the actual objective can be
always achieved or verified, due to the intrinsic nature of the objective
function.

The rest of this section discusses whether the SAI algorithm (a)
currently has the features outlined earlier and (b) if not, what changes
would be necessary to incorporate such features:

(1) Interactive feature: SAI either does mot have it, or has it in a

very crude form. We expect that making the aprroach interactive would not
be difficult conceptually, in principle, but that it would involve a
substantial amount of new software development.

(2) Restart capability: SAI does rot have this capability currently.

Introducing the feature could be done to some extent, although it would
involve some thinking as to how to make the algorithm "remember" previous
assignments. More difficulty is expected whenever cne or a few cargoes
need to be "inserted" into existing schedules (actually, the SAI FORTRAN
algorithm may be quite cumbersome in doing this). In all cases,
substantial new software develomment would be necessary.

(3) Hierarchical design: SAI has that feature, but only to a certain

extent. For instance, its first iteration is in itself a gross flexibility
analysis. However, SAI falls short of incorporating some very important
features into the problem. The most important of those is queueing at
ports. It is not clear to us whether SAI can be modified so that queueing
is explicitly taken into account.

(4) User-friendly/graphics feature: SAI does not have the feature, but

it would be relatively straightforward to implement it.

-47-

It is clear fram the above assessment that it would be rather
difficult to modify the SAI algorithm to function in an operational
setting. Similar conclusions can be reached regarding the other
methodologies described in Section 2.4. of this chapter. Given that the
rospects of an exact solution methad are remote, the MIT team developed a
heuristic procedure which is, by design, specifically tailored to the
nature of this problem. This procedure is described in the following

chapter.

-48-

CHAPTER 3
THE MORSS ALGORITHM

3.1 Introduction

MORSS is an acronym for MIT Ocean Routing and Scheduling System. It
consists of four subsystems, READIN, DISPLAY, SEEDS, and SCHEDULE.

The first subsystem, READIN, creates and initializes all data
structhres ard reads in all data. The second, DISPLAY, is a menu-driven,
data management subsystem which enables and enhances the interactive nature
of MORSS. The third subsystem, SEEDS, initializes the scheduling process
by assigning a maximum of one cargo to each ship. The fourth subsystem,
SCHEDULE, is the main functional part of MORSS. 1Its purpose is to form a
schedule for each ship, based on the given cargo movement requirements.

The flow logic for these subsystems is given in Figure 3.1. Details on the
data structure design are given in Appendix A of this report. Details on

| the organization of the routines as well as flowcharts are given in
Aprendices B and C.

In the rest of this chapter we concentrate cn the approach we have
used the routines associated with SCHEDULE. We discuss the assumptions,
problems, movitations and rationale which led us to structure these
routines as we have.

3.2 The Scheduling Subsystem

This section contains a detailed description and explanation of the
scheduling subsystem SCHEDULE. SCHEDULE operates after seed assignments
have been made - (more on this in Section 3.5). Its function is to assign

cargoes to ships so as to maximize the net overall utility of all

-49-

MORSS

Start

1

READIN

Reads in data and
initializes structures

DISPLAY

Displays data according
to a user-driven menu

SEEDS

Performs seed assign-
ments

A

DISPLAY

l

SCHEDULE

Main body of MORSS
algorithm

l

DISPIAY

Fiqure 3.1

-50-

assignments. It does this by following the sequence of steps outlined

below (details follow):

Step 0: Initialize "master list" of unassigned cargoes.

Step 1:

Step 2:

Step 3:

SteE 4:

Step 5:

Set up overall horizon (0,T) (T:user inpt)

Select length of individual time horizons L (user input:0<L<T)
Select fraction a (user input: O<a<l)

Set k=1, t,=0.

Set up next time horizon (tk,tk+L)

Form list of cargoes eligible for assignment (all cargoes

in "master list" whose EPT's are between t, and t +L) -
Calculate assignment utilities for all eligible

cargo/ship mairs (see section 3.2).

Form and optimize a transportation network using assignment

utilities as arc costs. Resulting assignment forms the "tentative
assignment" for time horizon (ter t, +L) .

Return (a) all unassigned cargoes by Step 3, (b) all tentatively
assigned cargoes whose EPT's are between tk+aL and tk+L, and (c)
all tentatively assigned cargoes which interact unfavorably with
other assigned cargoes, into "master list" of unassigned cargoes.
Make all other cargo/ship assignments in (tk,tk+aL) "permanenﬁ"
and remove corresponding cargoes fraom "master list" of unassigned
cargoes. Remove any "infeasible cargoes" (see Section 3.5) from
"master list” of unassigned cargoes.

"Roll" time horizon: Set t 41 = Lowest EFT of all cargoes in

"master list" of unassigned cargoes. Set k=k+l and go to Step 1.

MORSS is based on a "rolling horizon" scheme (see Figure 3.2). The

|

-5]-

ROLLING HORIZON

t

-
poaee.
—

—

horizon
. at k-th .

iteration

Figure 3.2

—
ture

-52-

rolling horizon is a decomposition of the problem by time. The overall
scheduling horizon T (which can be of the order of 180 days for long-range
problems) is subdivided into time horizons of shorter duration L (say, of
the order of two weeks). Within these shorter time horizons, assignments
are made first on a tentative basis, and only cargoes within the "front
end" of L are considered for permanent assignment. Parameter a specifies
what fraction of L cargo assignments may be considered to become permanent.
Thus, if L=2 weeks ard a=0.5, MORSS will "look" at two weeks of cargo data
at a time, and at each iteration will assign only cne week of cargoes.

There are severél positive features in this "rolling horizon"
approach : First, we place a lesser emphasis on the less reliable future
information on cargo movements. This advantage is of particular importance
in emergency situations where movement information more than several weeks
in advance may be subject to a number of alterations. Our apgroach focuses
each iteration on near-term events but also has a look-ahead capability so
that future scheduled events are taken into account. In addition, the
initial ship positions are modeled explicitly within our framework. For
these reasons, we believe that a time-decomposition approach is
apgropriate,

A crucial aspect of our approach is that the future is taken into
account through information contained in adjacent time intervals. 1In
particular, most ship voyages are scheduled over two consecutive intervals.
The rolling horizon concept enables this connection of successive time
intervals by examining overlapping time horizons. Thus, te+l will be
typically smaller than t, +L (see Figure 3.2) (an exception would occur if

there are no cargoes having EPT's between tk +1 and tk""L)‘

-53-

In Step 0 (initialization), and since the overall pEoblem is
dynamic in nature, the value of the time horizon length T may not
necessarily be known to the scheduler in advance. In this case, T is set
at some arbitrarily large value.

We now describe cur modeling of the of utilities for each eligible
cargo/ship pair.

3.3 Assignment Utilities

Within each time frame, MORSS makes assignments of cargoes to ships
while taking into account assignments made in mrevious periods. At the kth

iteration, MORSS has already assigned cargoes leaving prior to t In

"
addition, some previously assigned cargoes may have pickup and/or delivery
times scheduled after t . Because any subsequent assignment could cause
changes in the anticipated delivery times of previously assigned cargoes,
the utility of a proposed assignment takesA into account both the projected
delivery t'_une of the assigned cargo and its effect on the delivery times of
meviously scheduled cargoes.

In addition, we will not assign too many ships to cargoes in the
kth scheduling horizon so as to be able to satisfy requirements for pickups
in the subsequent two time horizons. In addition we model the delays
caused by queueing at ports. (Our current model of queueing delays is a
simple nonlinear estimate. We expect to refine our model in the future,)

These considerations lead us to conclude that the utility, or value
of a proposed new cargo/ship assignment must depend on the following
factors:

(1) the assignment's effect on the delivery time of the cargo to be

considered for assignment;

-54-

(2) the assignment's effect on the delivery time of previously

assigned cargoes;
(3) the assignment's effect an the system's ability to handle future
cargo movement requirements:

(a) wuse of ship resources over the entire scheduling horizon;

(b) use of port resources over the entire scheduling horizon.

We now discuss each of these factors in detail:

3.3.1 Delivery Time Utility (For a Proposed Assignment)

In calculating this utility, and as we already mentioned in Chapter 2,
we consider both the Earliest Pickup Time, (EPT), and the Earliest Delivery
Time (EDT), to be "hard" constraints, that is, these constraints cannot be
violated. We point cut, however, that MORSS could be easily modified to
handle "soft" EPT's and/or EDT's. This modification could be incorporated
via changes to the metﬁod of calculating utilities, and would also increase
the number of feasible schedules.

Although the EDT and EPT constraints are hard, we treat the latest
delivery (LDT) LDT requirements as soft. To illustrate why, we consider
a specified cargo movement requirement such that a caombination of EPT,
EDT, and IDT times is demonstrably infeasible. Specifically, in
MSC-supplied data (see also Chapter 4) we have found a number of demonstrably
infeasible cargo movements arising fram the following situations: (1) the
fastest ship of a given type is too slow to transport a cargo within the

specified EPT-LDT interval; (2) only one ship can be available (at a

-55~

specific time) to satisfy as many as (say) three cargo movement
requirements: It may Apick up and deliver any two of the three cargoes
within their specified EPT-LDT intervals, but for a variety of reasons it
may rot be able to do so for all three; (3) cargo movement requirements
greatly exceed total available fleet capacity; and finally (4) port
throughput limitations cause queuing delays at POE's and POD's. 1In
addition, other factors such as ship-port restrictions, delays and
medium-term saturation of shipping resources lead to LDT infeasibility for
sets of cargoes. For these reasons we assume that the LDT constraints are

"soft", that is, may be violated if necessary. We can then incorporate

penalties for LDT violations into our objection function.
Given that latest delivery times are negotiable, we ask the question:
How does the "value" (or "goodness") of a delivered cargo change as a
function of delivery time? After extensive discussions with MSC personnel,
we decided to answer this question as follows: First of all, each cargo ¢ has
a maximum possibile utility, say u(c). If the cargo is delivered early or
on time (that is, if it arrives between its EDT and its LDT) its
corresponding value is the maximum u(c). If it is only a few days late
(say 1 or 2 days after its LDT) we assume its value is lower than u(c),but
very close to maximum. If it is more than a few days late we assume its

value decreases rapidly with delivery time delay until it reaches a minimum

value, at some time LDT + £y. We assume that delivery beyond LDT + t, does

0
not substantially change the value of the delivered cargo, with that value

remaining at its minimum. Parameter t:0 is user-input for each cargo, and
is cargo-dependent. We have set ty = 14 days for the initial calibration

of MORSS. By this assumption, a cargo delivered 2 weeks after its LDT is

-56-

worth about the same as if it were delivered 4 weeks after its LDT.

There are several possible functional forms for the delivery time
utility of a cargo, all of which fit the above assumptions well. We have
chosen a bell-shaped function because it is smooth and continuous and also
matches our intuition better. It is also flexible due to four free

parameters. A mathematical formulation for a bell-shaped function follows.

Let
Ue = Delivery time utility
Vmin = Minimum utility (for very late cargo)
Vinax = Maximum utility (for on time cargo)
t Tardiness of cargo (Arrival time - LDT if >0, zero otherwise
t = i i = . -V_ .
0 Time for which Uc = Viin ¥ %1 Voo Vinin)
b = Nonnegative exponent
Then
U = V. + (V. __ -V 'Z(t/te)l»3
c min max " 'min) (3.1)

The four parameters Vi Vinax’ to and b are user-inputs, and, in

in’ “max
general, cargo-dependent (particularly Vmin and Vmax) .

Graphs of Uc for several values of b are shown in Figure 3.3. Note
that the case b = 2 corresponds to a shape similar to the curve for the
Gaussian Probability Density Function.

3.3.2 A Proposed Assignment's Effect on Previously Assigned Cargoes

In our analysis of the effect of a moposed assignment on other
previously assigned cargoes, we assume that, given a cargo's delivery time,
that cargo's utility is independent of the delivery time of any other

cargo. Specifically, for each cargo j, we assume that V v

max’ ‘min’ t0 and

e

-57-

£°¢ 2anbty

57T % O350

+ 8

ALTTLLO dWILL AMIATTAQ

-58-

b are particular to cargo j; that is, they are independent of the delivery
times of all other cargoes.

This assumption is reasonable given we have assumed no precedence
constraints on the deliveries of cargoes (see Chapter 2). In the real
world, exceptions to this rule may occur. For instance, delivering a
particular cargo on time might be worthless (or even might be undesirable)
if some other cargo has not been previously delivered. If such constraints
do exist, MORSS handles them by user intervention and not intémally.

Because of the independence assumption, the marginal effect of a
proposed cargo/ship assignment on the delivery time utilities of other
cargoes would be equal to the change in total delivery time utility of all
previously assigned but yet undelivered cargoes (scheduled to be deliveréd
by the ship in question aonly,) that occurs because of the addition to the
proposed new cargo on that ship., In othér words, the effect of a proposed
assignment on a set of known assignments is the difference in the total
delivery time utilities, with and without the proposed assignment. More

rigorously, let

AUD = effect of a proposed assignment on the utility of

cargoes 1,...,n (already assigned to same ship)

c
L[}

utility of cargo j in original schedule (without

3
new assignment)
Uj' = utility of cargo j in schedule which includes pickup
and delivery of proposed assignment.
Then
n . .
AU, = jil (Uj - Uj) (3.2)

-59-

3.3.3 A Proposed Assignment's Effect on the System's Ship Resources

The mrimary motivation for this utility component is that ship
resources are limited. There are a limited number of ships. Because of
this limitation we wish ships to sail as fully loaded as possible. Thus
ship utilization is important in assessing the goodness of a potential
assignment.

It is rarely possible, however, to achieve 100% utilization on any
leg of a ship's journey. Indeed, many ships often return (to pick up
additional cargo) on ballast, which significantly decreases the average
utilization. In addition, a high utilization may be impossible for a given
problem. This might be because of the EPT/EDT/LDT structure of the
roblem. For instance, in MSC-supplied data we have seen that the
assignment of a cargo to a ship severely limits that ship's ability to pick
up and deliver other cargoes cn time.

Looking at the use of ship resources in another way, and comparing
two potential cargo assignments for a ship, (everything else being equal),
we will tend to prefer the ocne which gives the ship the most flexibility
(in terms of available slack in that ship's schedule) in carrying
additional cargoes. Thus, "schedule flexibility" is also important in
assessing the goodness of a potential assignment.

The value of "ship utilization" and of "schedule flexibility" are
related in the following way: In terms of ship resources, the optimal
condition is for the ship to be full. In this case schedule flexibility is

unimportant since the ship can pick up no additional cargoes. (We assume

-60-

most trips are fram an area of POE's to an area of POD's with no - or few -
PD's in between). Here we have maximum utilization of shipping resources.
The worst situation is for a ship to be empty (or nearly so), and, to have
no schedule flexibility. Here the ship is essentially worthless, since it
is both almost empty anmd has little flexibility in its schedule to pick up
new cargo. This is the case where the ship is deadheading and on a tight
schedule. Here we have zero use (i.e. waste) of shipping resources.
Intermediate between these extremes is the situation where the ship is
empty and has maximum schedule flexibility. This is the case where the
ship has no future deliveries scheduled yet. Here mo shipping resources
are being used - the ship is empty - yet shipping resources are available
because of the schedule flexibility. 1In this case we give a low, but
intermediate value for utilization of ship resources, or ship utility.

These cambinations are summarized in Table 3.1.

Ship Condition Schedule Flexibility Ship Utility .
Full High Maximum
Full Low Maximum
Empty High Low
Empty Low Minimum
Table 3.1

For intermediate values of ship utilization and of schedule
flexibility, ship utility is an increasing function of each component.

There are several functional forms which fit the abowve -
characterization of ship utility. Again we chose a bell-shaped model for

MORSS for two reasons. (1) It more closely reflects our belief that :

-61-

utility should change more rapidly at the intermediate ranges of the
canponents than near the extreme values, and (2) its specific form is

flexible due to five free parameters.

A mathematical formulation for such a bell-shaped function follows:

Let

U = Ship utility at a stop.

Ve = Maximum value of ship utility

R = Residual capacity of ship after the stop

C = hip capacity

F = Schedule flexibility (slack in schedule averaged
over-all future stops)

L = Scheduling horizon length

c,d = Non-negative user inputs

£ = User-input 0< £ <1

Then

o= v ®) @ - £E/w)° (3.3)

A graph of this two-dimensional surface appears in Figure 3.4.

Note that the value of this utility is different at each stop on a
ship's schedule. For any given stop, its value depends on the fractional
ship utilization immediately after the stop (i.e. between the stop and the
following stop), and an schedule flexibility averaged over all future
stops. As a result, the value of ship utility for a proposed assignment

must be a combination of ship utility at the pickup and at the delivery.

Ship locaded to S
capacity <

maximum scheflule
flexibility——

-62~

SHIP UTILITY

no schedule

S flexibility

R/C

F/L

Figure 3.4

empty ship

-63-

We have chosen to add these two utilities directly, so that

Us = Us(pickup) + Us(delivery) (3.4)

where U_ = total ship utility for an assignment.

Our motivation for this choice is that is camputationally simple and
achieves aur desired objective of encouraging assignments which utilize
fewer ship resources.

3.3.4 A Proposed Assignment's Effect on the System's Port Resources

The motivation of this utility component is that port throughput
capacity is limited, and queueing can cause enormous delays and waste ower
the long run, because of idle ships. Because of this limitation we wish to
discourage additional ships from stopping at ports when they are near or
over throughpat capacity. In this case we wish to encourage a ship which
has already been assigned to a port for another task, to handle the pickup
or delivery of other cargoes in that port within the same time frame. Our
method is the following. We divide the overall scheduling horizon into a
series of "congestion periods" of length p. (We chose p=3 for the initial
calibration runs). We then keep track of the number of stops at each port
for each of the congestion pericds.

The congestion level for a period is defined as the ratio of the
number of scheduled stops in the pericd divided by the total throughput
capacity, measured in number of ships, of the period. Since these
congesticn levels depend on the number of stops scheduled so far, and these

numbers change with each new set of assignments, MORSS updates them at each

iteration.

-64-

Port congestion and the value of port utility for a proposed cargo
movement (pickup or delivery) are related as follows. The optimal
condition is when no additional stop is required to fulfill the movement. A
ship already assigned to the port can do the job. Here no additional port
resources are used, so the value of port utility is maximum. If, however,
an additional ship entry into the port is required to fulfill the task,
“then the situation is more complex ard will in all cases, exhibit a lower
utility. At higher levels of port congestion, available port resources are
scarcer, so their value is higher. Similarly, at lower levels of
congestion, port resources are abundant, hence cheaper to use.
Consequently port utility is a decreasing function of congestion.

‘There are several functional forms which fit this description of
port utility. As before, the bell-shaped curve is more attractive because
it is smooth and is flexible because of four free parameters. A sample
graph is shown in Figure 3.5.

A mathematical formulation for the bell-shaped curve is given

below, for the value of port utility at a stop.

Wp If no additional stop is required
U =
ps 1 .
v e—2 (mN/P) If an additional stop is required.
P (3.5)
where
Ups = Port utility for the stop

Wp = Maximum value of port utility if no additional stop is required

<
1]

Maximum value of port utility if additional stop required
Number of stops in port during congestion periad in question

-65-

d/N

- N

01

G ¢ aanbTd

L

ALT'ILIN JA0d

-66-

Throughplt capacity of port, per congestion period

av)
n

L}

m,l Nonnegative constants,

Since this utility is different for each stop an a ship's schedule,
the total value of port utility for a proposed assignment must be a
cambination of the port utilities at the pickup and at the delivery. We
have chosen to add these two utilities directly so that

Up = U (pickup) + Uy (delivery). (3.6)

where Up = total port utility for the assignment.

Our motivation for this approach is that it achieves our primary
objective: encouraging assignments which utilize fewer port resources, .
while being computationally simple. This functional form is but a first
apgroximation of the queueing pocess at a port, a process which in itself
merits further inves;‘:igation (see also Chapter 5).

3.3.5 Total Assignment Utility

Our grevious discussion has shown that the utility of a proposed

assignment depends on four factors:

(1) its own delivery time

(2) its effect on other cargoes' delivery time,
(3) its use of system ship resources, and

(4) its use of (system) port resources.

For this initial phase of the moject, we have expressed the total
assignment utility as a weighted sum of four utility components.

Mathematically,

U, = U, + AUy + U+ Up (3.7)

where

-67-

(]
[}

Total utility of an assignment

t
Uc = Delivery time utility for the assignment
AU, = Effect of the assignment another cargoes U.'s
Us = Ship utility for the assignment
Up = Port utility for the assignment.

Note that the weighting factors for the component utilities are
implicit in their calculations, because of the terms Vmin' Viax+ Use wp,
and Up. A major part of the (initial) calibration of the model will be
determining appropriate relative values for these weighting factors.

We now turn to the question of how SCHEDULE determines the
assignment utility for a given ship-cargo pair. SCHEDULE does this in
several steps. First, an incompatibility may exist if the ship fy;e and
cargo types do not match or if the port facilities at POE or POD cannot
handle the ship because of draft, beam, heavy lift, etc. constraints. 1In
this case the assignment utility is given a large negative value. Then
SCHEDULE examines a set of possible ways to insert the cargo's pickup and
delivery into the ship's existing schedule. For each of these insertion
possibilities, SCHEDULE computes a utility value. If every insertion
possiblity yields a net decrease in overall delivery time utility, i.e if
Uc + 40, <0 for all insertion possibilites, then the assignment utility
is given a negative value. Otherwise fram those insertion possibilities
which realize a net increase in overall delivery time, SCHEDULE chooses the

one with the maximum overall utility. The utility of the assignment is

then set equal to the utility of this insertion possibility.

-68-

3.4 Solving the Assigrment Problem

As we have noted previously, the main source of complexity m the
Sealift problem is common to a broad class of scheduling problems. The
extreme complexity of the problem stems fram the non-linear interactions
between utilities of different ship/cargo assignments. The utility of any
cargo-ship assignment is directly dependent upon the assignment of other
cargoes to that ship. It is also indirectly dependent on queueing at
ports-of -call, caused by cargo assignments to other ships. As previously
discussed, our approach is to decompose this problem by time into smaller
problems, one per scheduling horizon. This decomposition reduces the
camplexity of the problem by several orders of magnitude, but does not
bypass it entirely. The remaining complexity may be addressed by the
question: On what basis do we simultaneously assign cargoes to ships when
the assignment utilities' strongly depend on how ships schedules are
modified by the assi'gnments themselves? There are several possibilities.

One apgroach is to simultaneously assign all cargoes within the
scheduling horizon, using utilities calculated from p:evibus schedules.
This has the advantage of simplicity and speed, but it ignores cargo
interactions. We have thus rejected this approach.

A secord approach is to assign cargoes one at a time, starting with
the one with the highest assignment utility, or the ocne with the earliest
EPT, and then recomputing utilities of all other eligible cargoes based on
that assignment. This approach has the advantage of taking into account bad
interactions in a myopic way. It fails to capture the favorable
interactions between compatible sets of cargoes. It is also
comp.xtationally slow. A modification of the secord approach is to assign

one cargo per ship and then recompute utilities at each iteration. This

-69-

forces ships to have the same number of cargoes, and fails to capture
favorable interactions. |

A third approach is to enumerate all possibilities. This method is
computationally tco expensive. There are of course many other
modifications and types of approaches. From the three described above, we
may, however, deduce principles fram which to select an appropriate |
heuristic. We wish at the same time and with a reasonable computational
effort, to: (1) capture as many favorable interactions as possible, and
(2) eliminate bad interactions between assignments.

It should be clear that we are in a tradeoff situation with respect
to these goals. We have therefore chosen a heuristic solution methodology
which is a compromise between achieving the two goals. The heuristic
allows multiple simultaneous assignments for each ship, via an optimally
solved transportation problem. It assigns cargoes within each scheduling
horizon, rejecting assignments which have strong negative interactions.
Thus the algorithm maintains the computational speed of simultaneous
assignments and the "goodness" of a solution which takes interactions into
account. The rest of this section contains a detailed description of the
heuristic (additional details on its computer implementation are in
Appendix B).

Once assignment utilities are calculated for all eligible
ship/cargo pairs, they are used to create a transportation network, (see
Figure 3.6). The network is bipartite. Ships are sources, and eligible
cargoes are sinks. To speed up the algorithm and to avoid excessive
non-linear interactions ships are given a user-input integral supply of S

(we chose S=4 for the initial calibration runs). S is the maximum number

-70-

dummy

ship B
- | real
cargoes
real 4
ships
L
dummy cargo

Figure 3.6

-71-

of simultaneous cargo assignments each ship may receive at any individual
iteration (scheduling horizon). Cargoes are given a demand of 1 to reflect
the fact that it must be assigned to a ship. In the network all compatible
ship-cargo mairs are connected by directed arcs (from ships to cargoes)
whose costs are the negatives of the corresponding assignment utilities.
In addition, for bookkeeping pirposes we create a dummy ship and a dummy
cargo.

The dummy ship has arcs to all real cargoes, each with "high" cost.
It is given an infinite supply, so it may take as many cargoes as
necessary. Its function is to take any cargoes which are not assigned to
other ships for any reason (incompatibility, limited shipping resources,
etc). The dummy cargo serves the fcllowing internal bookkeeping function:
It balances demard in the case where there is more ship supply than
cargoes. To accomplish this, it has cne arc from each real ship, each with
a "high" cost. When the network is complete it is sent to subroutine
FLOSUB. This routine finds an optimal solution to the transportation
problem. It maximizes the net overall utility of assignments in the
scheduling horizon, while assigning each cargo (dummy and real) to one ship
(QGummy or real). The routine FLOSUB uses an especially fast method written
by Orlin (1983a, 1983b). The mechanics are described in more detail in
Appendix B. The routine outputs a list of tentative feasible ship-cargo
assignments. How these are dealt with is described below.

3.5 Permanent Assignments

At each iteration MORSS divides the tentative assignments in the

interval (t, t, + L) returned by FLOSUB into three categories: (1) new

assignments which are unigue to a ship; (2) new assignments which are not

-72-

unique to a ship (that is, there 1is more than one tentative assignment to
the ship); and (3) assignments to the dummy ship. These are treated as
follows.

Assignments which are unique to a ship are made permane.nt. There
are no non-linear interactions with other cargoes assigned to the ship.

Assignments which are not unique to a ship are further divided by
ship. On each ship, the tentative assignment with the earliest EPT is made
permanent. The remaining tenative assignments on the ship are looked at in
order of increasing EPT. One by one their assignment utility is
recalculated based on the ship schedule updated by néwly made permanent
assignments. If the net decrease in utility is less than a user-inputv
critical value (percentage and/or absolute measure of change) the
assignment is made permanent. If the decrease in utility is more than the
critical value, then 'the cargo is returned to the pool of unassigned
cargoes.

| Assignments to the dummy ship are also returned to the pool of
unassigned cargoes. Assignments whose EPT falls in the interval (t:k + alL,
t:k + L) are not assigned permanently. Their function, as discussed
previously, is to link successive scheduling horizons. They are all
returned to the list of unassigned cargoes.

When a permanent assignment is made, it may happen that the cargo
is too large for available ship capacity. 1In this case the cargo is split.
As much as possible goes on the ship, amd the remaining amount is returned
to the pool of unassigned cargoes for the next iteration.

In order to prevent endless cycling caused by an infeasible cargo,

we limit the number of times a cargo may be returned to the pool of

-73-

unassigned cargoes. Once it has exceeded that number (we chose 4,
initially), it is added to the list of infeasible cargo movement
requirements. It is therefore possible that MORSS will leave some cargoes
unassigned. This is sometimes the most desirable ocutcome. Numerous
examples of infeasibilities exist in the MSC - supplied database, as
already discussed in section 3.3.1. However, MORSS leaves cargoes
unassigned only when the available alternatives have greater utility.
Since utility decreases with delivery time, unassigned cargoes are
possible.

3.6 Seed Assignments

Another concept central to MORSS is the concept of "seed"
assignments. This is a one-to-one assignment of some cargoes (seed
cargoes) to some ships early on in the scheduling process so that a good
starting solution is obtained. Such a solution serves as a "skeleton" for
the final schedule, which gradually evolves from the seed schedule as |
subsequent assignments are made at future iterations. As in other
assignments, seed selection is performed by solving an assignment problem
whose objective function is the maximization of the total "utility" of the
assignment. For each eligible seed cargo/ship mir, we again compute the
"utility" of the corresponding pair. The main differences between seed
assignments and subsequent assignments are (a) seed assignments are made on
a one-to-one basis whereas in subsequent assignments more than one cargo
can be simultanecusly assigned to a ship, and (b) subsequent assignments
take into account assignments already made at prior iterations while this
is not applicable in seed assignments.

At the present stage of our research, seed assignments are selected

-74-

by the MORSS user in an interactive fashion. We anticipate developing a
utility-based assignment approach, as discussed above, in the next thase of

our research.

-75-

CHAPTER 4

COMPUTATIONAL EXPERTENCE

4.1 Introduction

In this chapter we describe our computational experience with the
MORSS algorithm as it relates to data supplied to us by the MSC. We should
mention at the outset that the data we have used so far have been -
"sanitized” by the MSC so as to avoid the disclosure of sensitive
information. Such a "sanitization" process has been necessary given the
unclassified nature of the MIT project (or, of any MIT research project for
that matter). This chapter begins with a brief description of the MSC
database (Section 4.2) and proceeds with a presentation of gross
feasibility analyses that have been made with respect to the data (Section
4.3). Section 4.4 outlines our initial experience with the MORSS
algorithm, performed on a small subset of the MSC database, including an
interpretation of the results.

4.1 The MSC Database

The MSC database includes information on 505 cargoes, 232 ships and
26 ports.

Each of the cargoes is either a single item or a collection of
items that have a distinct POE and a distinct POD. In addition, each cargo
has a preferred ship type, an EPT, an EDT and an LDT. Also known is that
cargo's Short Tons (STONS), its Measurement Tons (MIONS) and its Deck Area
(SQFT). The 505 cargoes are classified into 8 categories, according to
preferred ship type: These are breakbulk (193 cargoes), seatrain (13
cargoes), RO/RO (151 cargoes), self-sustaining container (54 cargoes),

tanker (45 cargoes), amd barge carrier (25 cargoes), while 4 cargoes are of

-76-

an unspecified ship preference.

Ships are classified into 3 fleet types and 6 ship types: The
fleet type codes are MSC-controlled (38 ships), Ready Reserve (38 ships)
and Sealift Readiness Program (156 ships). The ship type codes are
breakbulk (100 ships), seatrain (5 ships), RO/RO (5 ships), self-sustaining
container (9 ships), tanker (25 ships) and barge carrier (18 ships).
Information on ships includes capacity (weight/volume/deck area), draft,
speed, cargo loading and unloading rates, as well as initial location.

Finally, the 26 ports of the MSC database are classified as
follows: 12 are POE's, 5 are POD's, and the remaining 9 are both POE's and‘
PD's. All ports of the database are located in the United States, the
Panama Canal Zone and the Pacific. Information on ports includes the
throughput characteristics of their various berths and terminals. All
inter-port distances are also known.

Various statistics of the MSC database (such as range of cargo
sizes, general cargo movement patterns, etc), have been reported in Chapter
5 of Jeng (1984). Here we focus cn analyses that can be quickly performed
to ascertain the gross feasibility ofa particular problem instance. The
following section provides the rationale that has been used on that score.

4.3 Gross Feasibility Analysis

Given a particular "problem instance" (that is, a set of prescribed
inputs for the MSC operational problem), we have assumed that the scheduler
would like to know early on in the decisionv-making process to what extent
this particular instance is feasible. That is, the scheduler would like to
obtain a preliminary idea regarding whether available resources are enough

to satisfy the prescribed cargo movement requirements. If the opposite

-77-

turns out to be the case, it would make little sense to proceed with a
detailed scheduling run, because most cargoes would be delivered late.
Instead,v it would then make sense to relay infeasibility information
immediately to the chain of command "upstream", so that either the cargo
movement requirements are modified, or additional resources are made
available, or some other measure is taken to alleviate this poblem. Thus,
the MIT team considered important that a set of simple feasibility tests be
developed, so that a "quick-and-dirty" picture of the feasibility (or lack
thereof) of a particular instance is established.

Gross feasibility analysis can be performed at various levels of
detail. At the simplest level, one can check whether the prescribed cargo
delivery time requirements alone are reasonable or unreasonable by
performing a screening test that will be described below. Such a test is
always an optimistic estimator of feasibility, in the sense that any
problem instance identified by the test as "bad" is always infeasible,
whereas an instance not identified as "bad" is mot necessarily feasible.
Such an instance (that is, one that has "passed" this first feasibility
screening test) can be further tested for feasibility by more sophisticated
tests (see later description), and, ultimately, be fed as input to MORSS
for detailed scheduling. Of course, if a problem instance fails to pass
this first screening test, it is "rejected" amd sent back to the chain of
camand upstream for further action.

As said before, the simplest screening test that can be performed
concerns cargo information enly. For a particular cargo, define SLACK(V) =
(LDT-EPT) - (Direct transit time between that cargo's POE and POD if ship

speed is V knots). This represents the maximum time slack between that

-78-

cargo's é?.t.u.a;l delivery time and its LDT, under the optimistic assumption
that the cargo leaves its POE immediately at its EPT and travels directly
to its POD.

Define also for that cargo SSPEED as the ratio of its POE/POD
distance divided by (LDT - EDT) and expressed in knots. This
optimistically represents the minimum ship speed required if the cargo
leaves its POE promptly, is delivered to its POD at its LDT, ard travels
directly.

Figure 4.1 is a histogram of SLACK(15) for all 193 cargoes
belonging to the breakbulk category (that is the largest cargo class in the
MSC database by number). Since many of those cargoes have negative
SLACK (V), ard since this statistic is only an optimistic representation of
the actual slack time, the histogram shows that delivering all of these

cargoes on time is virtually impossible, irrespective of both actual ship

resources and scheduling strategy.

A similar conélusion can be drawn for Figure 4.2, which 1s a
~ histogram of SSPEED for the same cargo sample. Given it is rather unlikely
to have breakbulk ships with speeds of more than 25 knots immediately
available, we can conclude that meeting cargo deadlines for this problem

instance is virtually impossible, whatever ships are available and whatever

algorithm is used for the scheduling.

Similar observations were made in the MSC database on virtually all
other cargo/ship categories. Put in another way, the MIT team discovered
that the MSC-supplied database suffered from a widespread degree of gross
infeasibility, at least as far as the possibility of meeting cargo due

dates was concerned. Fram our discussions with MSC personnel, we

.

-79-

(ST)AOV1S jo wel13doISTH : T aanbtg

ADN3NO3Y4

€T TT 4T 0T 64 81 LV 9V Gb ¥V €L TV ML OF 6 8 L 9 S 1 4 € [4 }
0-.+.--¢..-.¢o-.¢.-!-..-o.-li-..t..»...'¢...+-..4:..?..1,.-.7..4..'4-.-?.-.4---4---«....7-..
APGePEPISOILISIOIICERLTESE

’ [NN W

0B 0CEEPRRC POV IIAENIOINRGENBOOPSRNGPOAY

4680000000938 8¢0800rsNNOe

LR N N

eoee

R XXX R FEN RN R AN KA
XYY TR N
EEIXEER TR RN N A RN RS
9900020008000 000008P V000N ISS

. X RN
Gevorsssastee “ese e

" 8908906980005 000050800s0s0000 X R R}
PENSEEOGRISEILIOIBOENSIEIGIOIRAS s e
! PSPPI RIS LSS IR SR IPIIRELISEISISISIOICIOIILITS LR
2estv st srstese e ce s

XXX R RN R NREEEE AR ELE R .o

- Gesstsnedtsssssrenesdssansens s
. eesee LY
00000000000&4oo0ooooo.oo.oono.00.0..0..000.5.0000 aew
000'.0000010.!0000.900000.!00.0.0.000 L X]

. Pesesssne LR
. lo00000.0000000.0000!000!0000000.00¢bohocolaooooo ..

’ sassesese LR
...!.0..............'..0006Q!CIO..QC..'CO0."0"..00.00...0!.0.0..00..ooOQ..O.Q.....Q L]
YEEZX AN RSN R AR R Ad 3
Qoooooooooob
[

0...0.'0OQ'..'Q.......O0.00

[A XY R XN J
[A2 2J

]
|
|
|
|
|
|
|
I
N
*l
|
]
]
|
]
|
|
|
|
|
]
|
|
I
I
]
I
|
!
|
|
|
|
|
|
|
|
|
|
|
[
]

TO-NOTINO~OO0

o~V TON
L.} L))] 1

Ol -
[
ch-
ch-
vi-
Si-

OV

(sfep) (<)

-80-

d4d4ddss 3o

- AON3NO3 Y

€ tZ 1T OC 6i BF LI 9L S} ¥L €L TH M) O

*ll'#Ol'4!UO4!!!0!0!#0!0400'*9!C#!ll#'.l.’t'i,’dll*l!.*'lt.’ll‘*lll#'tl.o,'vc#ulo.*-.‘l.vlllt.llc#lu!'

|

B8040 0400¢000000000 8800920008380 40003000800F00BGOCGRNESE

(XA B AR ENENENRY ENEEENEEFEREEREN XNNY

GOSRILIPITITEINCIORIIEOIEIIIRBIIIRIREINOPINEIL00INIACEIIIINEREIENIETBIRLITIINIOIONIRIARRGEOOBROESPRSIBROROIUNS
B8040 8000000808030 0000 0008000 ERBIRRIAISIRCCETTIOIRSIARIEICEPSIBOINILINROIGIETY

VOB G PSP PPN P00038000 0044000980000 0000astrststsnsssone
(A A RN N EEE NSNS AR NN N ENEEE N NEWY]

002400300004 0090030000030000¢00000RIRISEIESETSES

BOOGBCRPRAS 0S40 S0 0PSBV IBENCPRRNSIOPSIOETETTYS

wei8o3syy (¢ oIMbI4

6 8 L 9 S 4 € [4 b

QQOOOQ.QOOQOOQOOQQC.OOQOOGOOm
0...0900—
0.00‘

OQ'..I..C.'...Q....‘“

LN X}
LA AR RE NN
LERX R]

[EEXENR Y]

>

[E AR EE NN RN NN RY]
(R R ERNE N NN NI
LA A EREENNERELNY B

sr s e

-
(A A RN R RENE SRR NN NTNEN NN
. (EXEE RN RS

-

L
L
-
.
.
LRI R N
L]
%8s 000t ANEICREISTIEDSOGS

»

L

(A X E NN NN ENNENENE R

*
.

(AN R EREX AN RN NENNEEN)

. & o

.
IR A NSNS ENEENRERENY
-

.
l
.
.’.'Ql.‘...‘."‘.'
S200000623000880000%80800

L

LA RN R YL NN]
..CQ.O'OOO'.’OD.OC..OQ.'I.."QO.

QO..O..OQ.OO
LEX X]

|
|
|
|
|
]
]
|
|
|
|
I
|
I
|
|
]
!
|
]
|
I
I
|
|
|
]
|
]
]
|
]

GE
tC
ce
(4
i C
oc

»
\7

X4
Le
3¢

OO~ O

(s3ouy) Q3ILSS

-81-

understocd that the infeasibility of the database could be attributed in
part to the "sanitization" process that was used to convert the database
from classified to unclassified. Other factors might be valid as well,
such as the facts that in practice a cargo's EPT and LDT are sometimes (if
not always) determined by two different (and sometimes unrelated) decision
ptécesses. As a result, a cargo's LDT usually reflects neither that
cargo's availability at its POE, nor its POE/POD distance (In fact, in the
MSC database we even found that in some cases a cargo had an LDT which was
earlier than its EPT - a clearly absurd requirement).

As a result of the above, the MIT team decided to use only smaller,
more manageable, and closer-to-feasible parts of the MSC database to test
the MORSS algorithm. This made sense since we did not want to begin the
testing of MORSS with huge, grossly infeasible amounts of data. In the
meanwhile, another database was prepared by the MSC and sent to MIT for
further testing. This new database arrived at MIT rather late for
inclusion in this report (August, 1985). This new database would be used
in conjunction with further calibration and testing of MORSS (see also
Chapter 5).

Before we describe our limited computational experience with MORSS,
we conclude this section by outlining a second-level, more sophisticated
gross feasibility test. Such a test could be used for data that have
passed the first test outlined earlier.

By contrast to the previous test which completely ignores ship
resource information, that is, is based only on an evaluation of "demand”
(cargo-related/requirements, this second-level test takes also into account

the "supply" side of the problem, that is, the ability of available ships

-82-

to meet that demand.

The second-level test formulates the feasibility problem as a
"transportation” problem. It sets up a bipartite network very similar to
the one described in Chapter 3, with supply node i (i=1,...,m) representing
ship i, and demand node j(j=1,...,n) representing cargo j. Let a; be the
capacity of ship i, w. be the size of cargo j and C;4 be the tardiness of

J J
‘delivering cargo j by ship i, assuming a direct and immediate service by

ship i fram the POE to the POD of cargo j. We then define as xij the capacity

of ship i allocated to cargo j and solve the following transportation

problem:
m n
minimize) b C..X.
Fomgm 8
T x.<a (i=1...,m
s.t. e < . = v ey
3=1 ij i
m
TOX.. = W. (3=1,..,n
i=1]
xij >0

It is clear that the optimal value of this problem is a lower bound
on the actual total weighted tardiness (ton-days late) that would incur
under any actual allocation of available ships to cargoes. Such a test is
actually identical to the first iteration of SAI's transportation algorithm
(SAI, 1982). Again, as in the previous case, this test is optimistic in
the sense that it always identifies a "bad" instance but may not
necessarily correctly proclaim one as "good". The latter, in a sense, can
only be assessed after detailed scheduling has been attempted.

Given the above considerations regarding the "reasonableness” of
the MSC-supplied database, the scope of any test runs of MORSS with that

database became immediately limited. Nevertheless, in spite of the

-83-

infeasibilities of the database, we began testing the algorithm with
subsets of the data. This is described in the following section.

4.4 MORSS Test Runs

We chose a subset of the MSC database for the initial runs of MORSS
with certain goals in mind. For ease of analysis we wanted ships and
cargoes to be of compatible types. We desired the problem size to be at
once small enough to easily manage and comprehend, and large enocugh to
contain the complexities of the MSC operational problem. Finally, we
wanted a nontrivial problem, one which reflected to some extent the
infeasibility of some of the time windows in the MSC database. 1In short,
we sought for a representative database for the initial runs.

To meet these goals, we selected a set of twenty breakbulk cargoes.
The LDT's of these cargoes ranged from day 8 to day 42. Their size ranged
fram 10 measurement tons to 264,414 measurement tons. The POE's included
four Atlantic-side ports from New York to Galveston, three Pacific-Side
ports from Los Angeles to Seattle, and four Pacific Ocean island locations.
The POD's included the Philipines, Malaysia and Eastern Australia. We took
relevant information for each of these ports (e.g. depth, width, interport
distances) fram the MSC database.

In analyzing the cargo data, we found that the roundtrip time of a
ship was long in comparison to the range of the cargo LDT's. This |
precluded the possibility of multiple trips by the same ship. We therefore
modified the EPT, EDT, LDT times to cover a 98-day span. This change
allowed a relatively small number of ships to meet most of the prescribed
cargo movement requirements, while completing as many as four (4)

roundtrips in the Pacific theatre, and two (2) roundtrips from East Coast

-84~

POE's. Cargo characteristics are listed in Table 4.1.

We chose a fleet of seven (7) ships for the initial runs. Their
speed ranged from 432 to 552 nautical miles per day. Their capacity ranged
from 3,800 to 19,125 measurement tons, and from 6,000 to 7,500 square feet
of deck space. For each ship, we took availability times at each port fram
the MSC-provided database, as well as other relevant ship characteristics,
e.g. draft, beam, boom capacity, etc.

Our objective in the initial compitational study was twofold.

First, we wanted to verify that MORSS was operating correctly ard in a
manner consistent with its design. Secondly, we desired to begin the
gross-scale calibration of the model, that is, empirically testing the
effect of seed assignments, cargo size and time window arrangement on the
quality of the overall solution (see also Chapter 5). Our procedure was
also two-fold. First, we tested MORSS on increasingly larger problems
until we were satisfied that the model was debugged. Then we began the
gross-calibration study, which we now discuss.

The initial runs confirmed our intuition that seed assignments
greatly influence the quality of the final schedule. Our strategy was to
try a variety of seed assignments in order to gain a measure of the
quantitative effects of this key factor. These assignments were made
randamly at first, then varied to test various hypotheses about what
constitutes "good" seed assignments. In particular, we attempted to
improve the quality of the solution (e.g. decrease the number of
undelivered cargoes) by modifying the assignment of seeds from one run to
the next.

The complete man-machine session for the first run (Data Set A) is

- 85 -

.17

Cargo Quantity (tons)
POE POD EPT EDT LDT A B C
1 Los Angeles Philippines 5 14 20 10680 - -
2 S. Japan Malaysia 5 20 27 14830 - 4830
3 Norfolk Philippines 11 10 30 4150 - 14150
4 Galveston Philippines 12 14 35 690 6900 -
5 New York Malaysia 18 28 40 10 1000 -
6 Charleston Malaysia 25 25 47 30 3000 -
7 Norfolk Philippines 25 5 53 195200 9520 -
8 Charleston Malaysia 31 10 57 264140 26414 12641
9 Norfolk Philippines 34 19 60 29030 - 12903
10 Hawaiil Philippines 35 9 65 7430 - -
11 San Francism Philippines 45 13 €9 190 1900 -
12 Wake Philippines 45 45 73 1950 - -
13 Norfolk Philippines 50 26 78 30 3000 -
14 Charleston Malaysia 55 30 80 16480 6480 -
15 Okinawa Malaysia 55 4 84 24650 2465 -
16 Okinawa Malaysia 57 6 87 51880 5188 -
Okinawa Malaysia 60 2 90 4120 - -
18 Japan Malaysia 65 6 92 1910 - -
19 S. Japan Philippines 65 11 94 150 1500 -
20 New York Australia 70 33 98 17550 7550 -
Table 4.1: Cargo Data Set (A, B, C are variants)

-86-

displayed in Table 4.2. These results show the effect of a gross
infeasibility in the problem structure. Two cargoes (#7 and #8) are very
large: Together they require 25 tripé by the largest ship. The next
largest three cargoes require 6 roundtrips. By contrast, the smallest five
cargoes fill 3.0% of the smallest ship. This large disparity between ship
size and cargo movement requirements allows only 11% of the total cargo
weight to be delivered on time, while 35% of the total number of cargoes
arrive on time. Because of this gross infeasibility, we modified the
measurement tons of twelve of the cargoes to even out the spread. The
revised numbers (Data Set B) appear in Table 1, column B, For this data
set only two cargoes require multiple ship-trips. Summary statistics from
runs 2,3, and 4 appear in Tables 4.3, 4.4 and 4.5 respectively (the
camplete man-machine sessions are amitted due to space limitations).

These runs use seven ships and several seed assignment configurations.

Same infeasibility remains since less than 50% of the tons are delivered on
time, and at most 60% of the cargoes arrive on time. We decided to further
modify the cargo sizes to make the problem more feasible, but first we
tried to improve the ship utilization, which is less than 7% for these

runs. (Note that in measuring ship utilization we also count ballast legs,

in which utilization is zero. This means that if a schedule includes
ballast legs and multiple rountrips, ship utilization should not be
expected to be high - see also discussion at the end of this section).

To this end we made three runs (summary statistics in tables 4.6, 4.7 and
4.8) with 5 ships in various seed configurations. As anticimted, ship
utilization rose, to an average of 10.6%. The percentage of tons delivered

on time dropped by nearly half, and the number of cargoes delivered on time

-87-

R; T7=0.01/0.01 14:03:35
SCHED
EXECUTION BEGINS. ..
8 SUPERCOMPLEXES
DONE READING IN COMPLEX AND PORT DATA
READ IN 20 CARGO RECORDS
READ IN 7 SHIP RECORDS
ENTER OUTPUT STREAM RATING, SCALE 0 10 t0O
1
QUTPUT SET AT 1

tss SEEDS s+
INPUT SHIP AND CARGO NO.
‘I;PUY SHIP AND CARGO NO.
INPUT SHIP AND CARGO NO.
INPUT SHIP AND CARGO NO.
INPUT SHIP ANO CARGO NO.
INPUT SHIP AND CARGO NO.
INPUT SHIP AND CARGO NO.
INPUT SHIP AND CARGO NO.

INPUT WIDTH ,LIMIT

R E R R N R N R R R R R N RN R R R R R R R R R R R R R S R AN R R R R A E RS A AR R E RN

SCHEDULE FOR SHIP NO. 1
TYPE MTON SQFT SPEED
1 14125 6000 432

DATE CMP NAME P_D QUANT RMRTN SLK CRG EPT EDT LDT MTON TYPE

14 Q9 L.A. P 10680 3445 O 1 5 14 20 10680 1
20 21 PHIL D 10680 14125 O {1 5 14 20 10680 1
54 5 CHAR P 14125 O O 8 31 10 57 264140 1
82 22 MALA D 14125 14125 O~ 8 31 10 57 264140 1

2 2 s s F e A E R R E R R R AR R R RN R AR AR R R R E AR R AR EREE R RS R RS ERR]

SCHEDULE FOR SHIP NO. 2:
TYPE MTON SQFT SPEED
1 14467 6000 444

DATE CMP NAME P_D OQUANT RMRTN SLK CRG EPT EDT LDT MTON TYPE
32 14 SJUAP 14467 o} 0O .2 S5 20 27 14830
38 22 MALA 14467 14467 0 2 5 20 27 14830
65 14 SUAP 1910 12557 21 18 65 6 92 1910
71 22 MALA 1910 14467 O 18 65 6 92 1810
88 11 SEAT 150 14317 O 19 65 11 94 150

VO VO v
- . s a -

Table 4.2(a): 7 Ships, Original Data Set (A)

-88-

101 21 PHIL O 150 14467 O 19 65 1 94 150 1

LE R AR R RS R AR EERNE SR AR R R RN R RN R R AR AR SRR E RSN AR RN R E R AR ERER NN R

SCHEDULE FOR SHIP NO. 3:
TYPE MTON SQFT SPEED
1 14467 6000 444

DATE CMP NAME P_D QUANT RMRTN SLK CRG EPT EDT LDT MTON TYPE

11 4 NORF P 4150 10317 1 3 1t 10 30 4150 1
36 2t PHIL D 4150 14467 o} 3 11 10 30 4150 1
45 13 WAKE P 1950 12517 3 12 45 45 73 1950 1
5t 2t PHIL D 1950 14467 O 12 45 45 73 1950 1
76 S CHAR P 14437 30 O 14 55 30 80 16480 1
77 4 NORF P 30 o} O 13 50 26 78 30 1
102 21 PHIL O 30 30 O 13 50 26 78 30 1
105 22 MALA O 14437 14467 O 14 55 30 BO 16480 1

AR E R R R AR SRR ER R R EEEEE S R E S E R R R R A R R AR R R R R N R N AR RN

SCHEDULE FOR SHIP NO. 4:
TYPE MTON SQFT SPEED
{ 14467 6000 444

DATE CMP NAME P_D QUANT RMRTN SLK CRG EPT EDT LDT MTON TYPE

14 8 GALV P 690 12777 [¢] 4 12 14 35 690 1
39 21 PHIL O 690 14467 (o) 4 12 14 35 690 1
53 110 S.F. P 180 14277 O 11 45 13 69 180 1
58 18 HAWA P 7430 €847 O 10 3% 9 65 7430 1
69 21 PHIL D 7430 14277 o 10 35 9 65 7430 1
69 21 PHIL O 190 14467 O t1 45 13 69 130 1
S5 2 NY. P 14467 0o O 20 70 33 98 17550 1
117 24 AUST D 14467 14467 O 20 70 33 988 17550 1

PR R S R R P N N R R R R R R R R R R SR R R R A AR R SR AR R R RS R RS R AR RS R

SCHEDULE FOR SHIP NO. S:
TYPE MTON SQFT SPEED
t 13800 6000 432

DATE CMP NAME P D QUANT RMRTN SLK CRG EPT EDT LDT MTON TYPE

25 4 NORF P 13790 10 1 7 25 5 53 195200 1
26 2 N.Y. P 10 O O 5 18 28 40 10 1
52 21 PHIL D 13790 13790 O 7 25 S5 53 195200 1
55 22 MALA D 10 13800 O 5 18 28 40 10 1
60 17 OKIN P 13800 O O 1555 4 B84 24650 1
65 22 MALA D 13800 13800 O 15 55 4 B4 24650 1
93 2 N.Y. P 3083 10717 O 20 70 33 98 17550 1
115 24 AUST D 3083 13800 O 20 70 33 98 17550 1

I E R E R R RS E R SRR R E SRR R RS R R R E RS AR A AR RS R E AR R AR R AR R ERE D]

SCHEDULE FOR SHIP NO. 6:
TYPE MTON SQFT SPEED
1 18125 7500 552

Table 4.2 (b)

DATE CMP NAME P_D
25 5 CHAR
47 22 MALA
7 17 OKIN
55 17 OKIN
60 17 OKIN
64 22 MALA
68° 17 OKIN
72 22 MALA
76 17 OKIN
80 22 MALA
84 17 OKIN
88 22 MALA
88 22 MALA
88 22 MALA

O0O0OVOVO VO UYLOO O

-89-

QUANT RMRTN SLK CRG

30 18095

30 19125
4155 14970
10850 4120
4120 o)
4155 4155
4155 o]
10850 10850
10880 o)
4120 4120
4120 0
4155 4155

10850 150085
4120 19125

11

[oeNoNeoNoNoRoRoNoR- NN Neo

16

EPT EDT LDT

25 25 47 30
25 25 47 30
57 6 87 51880
55 4 B4 24650
60 2 S0 4120
57 6 87 51880
57 6 87 51880
55 4 B84 24650
57 6 87 51880
€60 2 90 4120
57 6 87 51880
57 6 87 51880
57 6 87 51880
57 6 87 51880

MTON TYPE

- b s s b e b A s s -

(A R R R RS R AR R A AR R R RS R R S R A X R R R AR R AR R R R E R R R R R R R R R R R RNE)

SCHEDULE FOR SHIP NO. 7:

TYPE MTON SQFT S
t 19125 7500

DATE CMP NAME P_D
25 4 NORF
45 21 PHIL
65 S CHAR
87 22 MALA

O v O ot

11
0
o}

7

7
14
14

PEED

5§52
QUANT RMRTN SLK CRG
19125 [¢)

19125 19125

2043 17082

2043 19125

0

EPT EDT LDT MTON TYPE

25
25
55
55

S
)
30
30

53 195200
63 195200
80 16480
80 16480

{

1
1
1

..“.‘_..““““‘..“‘.‘.".‘.....‘.".v“‘.'..‘.‘...i“.‘.‘l'.

UNSCHEDULED CARGOES:

CRG POE NAME POD
2 14 SJUAP 22

7 4 NORF 21
8 S CHAR 22
9 4 NORF 21

16 17 OKIN 22

NAME
MALA
PHIL
MALA
PHIL
MALA

EPT
S
25
31
34
57

EDT
20
)
10
19
6

LDT
27

1

MTON
4830

53195200
57264140
60 29030
87 51880

TYPE

1
1
1
1
1

I A EEZ R EEEEENEN R RSN R SRR RS R R RS RR R R R SRR AR S EE R ERE R SRS R R RS R

[R R RS R RS RSN R R R SRR R R R E R S AN SR R AR R R R SR AR R R E SRR R R RSN Y]

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINES
STD.DEV. CARGO TARD

S
INESS

MEAN WEIGHTED CARGO TARDINESS
STD.DEV. WEIGHTED CARGO TARDINESS
PERCENT CARGOES DELIVERED ON-TIME
PERCENT CARGOES DELIVERED LATE

PERCENT COMPLETELY DELIVERED CARGOES

PERCENT PARTIALLY DELIVERED CARGOES
PERCENT UNDELIVERED CARGOES

Table 4.2(c)

6
11

8

8
9466
9910
35
€60
75
20

S

.80
.85

.00
.00
.00 %
.00
.00

-90-

PERCENT TONS DELIVERED ON-TIME = 10.84 %
PERCENT TONS DELIVERED LATE = 16.26 %
PERCENT TONS UNDELIVERED = 72.90 %

(AR SN R R AR R R R R R R R N R R R R R R R R R R R R R R A R R SRR AN AL AN

I AR R R E AR AR R R R R S R R R R R R R R R E R R R R A N E R RN AR NN AR EE LR R LR

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY

= 1.31
MEAN WEIGHTED ROUTE CIRCUITRY = 1.24
MEAN SHIP UTILIZATION = 11.93 %
MEAN DISTANCE TRAVELED = 34585
STD.DEV. OF DISTANCE TRAVELED = 8002
MEAN TON-MILES = 2.21E+08
STD.DEV. OF TON-MILES = 1.42E+08
MEAN SHIPPING DISTANCE = 8839
MEAN PORT DELAY PER STOP = 1.250
STD.DEV. OF PORT DELAY PER STOP = 5.013
MEAN PORT DELAY PER SHIP = 9.286
STD.DEV. OF PORT DELAY PER SHIP = 11.250
MEAN PERCENT OF TIME SPENT IN PORT = 11.84 %
MEAN ROUTE TIME = 78.43
STO.DEV. OF ROUTE TIME = 16.76

R; T=3,24/4.71 14:05:20
SSTOP.

Table 4.2(4)

-91-

(I AR E R ENERES R AR EE R SRR RN SRR R R R R Z R RN RS RN ERE DS

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 5.90
STD.DEV. CARGO TARDINESS = 8.03
MEAN WEIGHTED CARGO TARDINESS = 35697
STO.DEV. WEIGHTED CARGO TARDINESS = 66271
PERCENT CARGOES DELIVERED ON-TIME = 50.00 %
PERCENT CARGOES DELIVERED LATE = 45.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 85.00 %
PERCENT PARTIALLY DELIVERED CARGODES = 10.00 %
PERCENT UNDELIVERED CARGODES = 5.00 %
PERCENT TONS DELIVERED ON-TIME = 47.75 %
PERCENT TONS DELIVERED LATE = 34.72 %
PERCENT TONS UNDELIVERED = 17.53 %

(2 AR R R AR E AR AR R R A AR A R R R R R R EE AR R R AR R R R ERE RSN

I 2R R R R R AR R AR AR AR R AR AR R AR R Z R Rl R RS

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 0.89
MEAN WEIGHTED ROUTE CIRCUITRY ® 0.82
MEAN SHIP UTILIZATION = 2.87 %
MEAN DISTANCE TRAVELED - 21985
STD.DEV. OF DISTANCE TRAVELED = 8001

MEAN TON-MILES = {.34E+08
STD.DEV. OF TON-MILES = 1.04E+08
MEAN SHIPPING DISTANCE = 7653

MEAN PORT DELAY PER STOP = 4,167
STD.DEV. OF PORT DELAY PER STOP = 12.980
MEAN PORT DELAY PER SHIP = 25.000
STO.DEV. OF PORT DELAY PER SHIP = 23.317
MEAN PERCENT OF TIME SPENT IN PORT = 45 .34 %
MEAN ROUTE TIME = 55. 14
STD.DEV. OF ROUTE TIME = 26.09

R; T=2.08/2.95 12:13:04
SSTOP

Table 4.3: 7 Ships, Data Set B

-92-

[E R R E R SRR R R SRR R R E RS RS REE AR R R R RS R R R R R R R RN

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS e 5.45
STD.DEV. CARGO TARDINESS = 8.10
MEAN WEIGHTED CARGO TARDINESS = 34423
STD.DEV. WEIGHTED CARGO TARDINESS b 80202
PERCENT CARGOES DELIVERED ON-TIME = 60.00 %
PERCENT CARGQOES DELIVERED LATE = 40.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 90.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 10.00 %
PERCENT UNDELIVERED CARGOES = 0.0 %
PERCENT TONS DELIVERED ON-TIME = 43.43 %
PERCENT TONS DELIVERED LATE = 32.10 %
PERCENT TONS UNDELIVERED = 18.47 %

R R R 2 E 2R S Z S R R R R RN AR R R R R R R R R R R R R R R R R E RS R R R R A R RSN

P R R R R R R R N R R S R N R R A E R R E R R R AR R AR AR RN

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 1.19
MEAN WEIGHTED ROUTE CIRCUITRY = 1.26
MEAN SHIP UTILIZATION = 4.68 %
MEAN DISTANCE TRAVELED = 27878
STD.DEV. OF DISTANCE TRAVELED = 10007

MEAN TON-MILES = 1.79E+08
STD.DEV. OF TON-MILES = 1.11E+08
MEAN SHIPPING DISTANCE = 10313
MEAN PORT DELAY PER STOP = 1.881
STD.DEV. OF PORT DELAY PER STOP = 5.460
MEAN PORT DELAY PER SHIP = 11.286
STD.DEV. OF PORT DELAY PER SHIP = 8.939
MEAN PERCENT OF TIME SPENT IN PORT = 18.46 %
MEAN ROUTE TIME = 61.14
STD.DEV. OF ROUTE TIME = 18.80

R; T=2.15/3.01 12:15:55
SSTOP

Table 4.4: 7 Ships, Data Set B

-93-

(A XS AR AR AR RN RS R R R R R R A R R R R R R R R R R R R RS R R RN R R NE]

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 5.3%5
STD.DEV. CARGO TARDINESS = 7.95
MEAN WEIGHTED CARGO TARDINESS = 36519
STO.DEV. WEIGHTED CARGO TARDINESS - 75687
PERCENT CARGOES DELIVERED ON-TIME = 55.00 %
PERCENT CARGOES DELIVERED LATE = 45.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 90.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 10.00 %
PERCENT UNDELIVERED CARGOES = 0.C %
PERCENT TONS DELIVERED ON-TIME = 48.23 %
PERCENT TONS DELIVERED LATE = 42.82 %
PERCENT TONS UNDELIVERED = 8.96 %

PSS EF S EPEI LSRN LSS PSSP RCETELABEES LSS SRSV EFTSOISTRS S

‘.‘".“""..‘..“..“.'.‘.".."‘.‘.‘.‘{."“...'..‘.‘

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 1.13
MEAN WEIGHTED ROUTE CIRCUITRY = 1.14
MEAN SHIP UTILIZATION = 6.80 %
MEAN DISTANCE TRAVELED = 28464
STD.DEV. OF DISTANCE TRAVELED = 8105

MEAN TON-MILES = {.90E+08
STD.DEV. OF TON-MILES = 8.80E+07
MEAN SHIPPING DISTANCE = 9810

MEAN PORT DELAY PER STOP = 1.682
STD.DEV. OF PORT DELAY PER STOP * 4.850
MEAN PORT DELAY PER SHIP = 10.571
STD.DEV. OF PORT DELAY PER SHIP . 7.678
MEAN PERCENT OF TIME SPENT IN PORT = 17.66 %
MEAN ROUTE TIME = 59.86
STD.DEV. OF ROUTE TIME = 12.92

R, T=2.11/2.98 12:18:32
SSTOP

Table 4.5: 7 Ships, Data Set B

-84~

CP R RS EESIBEITLLT T L LRI RICPISI RSS2SR LENEIRCERLEIISOEPOSRERD

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 8.55
STD.DEV. CARGO TARDINESS = 13.22
MEAN WEIGHTED CARGO TARDINESS = 519414
STO.DEV. WEIGHTED CARGO TARDINESS = 97347
PERCENT CARGOES DELIVERED ON-TIME = 50.00 %
PERCENT CARGOES DELIVERED LATE = 40.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 75.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 15.00 %
PERCENT UNDELIVERED CARGOES ® 10.00 %
PERCENT TONS DELIVERED ON-TIME = 33.41 %
PERCENT TONS DELIVERED LATE = 34 .44 %
PERCENT TONS UNDELIVERED = 32.15 %

(AR A ERER AR ERE R AR A R AR RS R R R S A R R R N R R N A NN

LA R R R R R R RSN R R E R R R R R RS E R R R R R R R R R R R R E R R R E RS R E R RN E RN

‘
SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 1.00
MEAN WEIGHTED ROUTE CIRCUITRY = 1.12
MEAN SHIP UTILIZATION = 11.47 %
MEAN DISTANCE TRAVELED = 29784
STD.DEV. OF DISTANCE TRAVELED = 8447

MEAN TON-MILES = 2.00E+08
STD.DEV. OF TON-MILES = 1.1SE+08
MEAN SHIPPING DISTANCE = 9885

MEAN PORT DELAY PER STOP = 1.158
STO.DEV. OF PORT DELAY PER STOP = 3.796
MEAN PORT DELAY PER SHIP = 8.800
STD.DEV. OF PORY DELAY PER SHIP = 7.014
MEAN PERCENT OF TIME SPENT IN PORT = 12.43 %
MEAN ROUTE TIME = 70.80
STD.DEV. OF ROUTE TIME = 21.57

R, T=2.57/3.68 12:10:29

Table 4.6: 5 Ships, Data Set B

-05~

[E AR E R EE R R A E R R A R R E R EE B R R S A R R R R R R R R AR AR RN E R R RN ER R RN

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 11.65
STD.DEV. CARGO TARDINESS - 16.67
MEAN WEIGHTED CARGO TARDINESS = 73126
STD.DEV. WEIGHTED CARGO TARDINESS = 106733
PERCENT CARGOES DELIVERED ON-TIME - 30.00 %
PERCENT CARGOES DELIVERED LATE = §5.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 75.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 10.00 %
PERCENT UNDELIVERED CARGOES = 15.00 %
PERCENT TONS DELIVERED ON-TIME = 20.76 %
PERCENT TONS DELIVERED LATE = 57.21 %
PERCENT TONS UNDELIVERED = 22.03 %

I Z R E AR EER SR RERE RS R RS R RS R R AR AR EERERE R R R R R R RS R

[EEFEEE N EE R ERE NS RN SRR ERER R R RN R SRR R SRR R R NS]

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 1.1
MEAN WEIGHTED ROUTE CIRCUITRY . 1.12
MEAN SHIP UTILIZATION . 10.80 %
MEAN DISTANCE TRAVELED = 31630
STD.DEV. OF DISTANCE TRAVELED = 12247

MEAN TON-MILES = 2.15E+08
STD.DEV. OF TON-MILES = 9 46E+07
MEAN SHIPPING DISTANCE = 9235

MEAN PORT DELAY PER STOP = 1.237
SYD.DEV. OF PORT DELAY PER STOP = 4.444
MEAN PORT DELAY PER SHIP = 9.400
STD.DEV. OF PORT DELAY PER SHIP = 9.317
MEAN PERCENT OF TIME SPENT IN PORT = 12.53 %
MEAN ROUTE TIME = 75.00
STD.DEV. OF ROUTE TIME = 32.26

R; T=2.66/3.90 13:06:33
SSTOP

Table 4.7: 5 Ships, Data Set B

96~

I 2R N E R R R RS R R RS R AR R AR R R 2R RER R RS R R AN AR AR AR SRR R

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 3.40
STD.DEV. CARGO TARDINESS = 5.70
MEAN WEIGHTED CARGO TARDINESS - 14240
STD.DEV. WEIGHTED CARGO TARDINESS = 26227
PERCENT CARGOES DELIVERED ON-TIME = 45.00 %
PERCENT CARGOES DELIVERED LATE = 35.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 70.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 10.00 %
PERCENT UNDELIVERED CARGOES = 20.00 %
PERCENT TONS DELIVERED ON-TIME = 24.15 %
PERCENT TONS DELIVERED LATE = 33.91 %
PERCENT TONS UNDELIVERED = 41.95 %

[IR EE S R R R R R R R R R RS N R R R R R R R E RS R AR AR AR R R LR E S

2SS S LRSS L E R SR EA LSS A EB B SRR XN X XS EN XSRS EEERN SRR NN &

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 0.99
MEAN WEIGHTED ROUTE CIRCUITRY = 1.17
MEAN SHIP UTILIZATION = 9.62 %
MEAN DISTANCE TRAVELED = 24569
STD.DEV. OF DISTANCE TRAVELED = 10590

MEAN TON-MILES = 1.53E+08
STD.DEV. OF TON-MILES = 4.77€E+07
MEAN SHIPPING DISTANCE = 8815

MEAN PORT DELAY PER STOP = 1.500
STD.DEV. OF PORT DELAY PER STOP = 5.218
MEAN PORT DELAY PER SHIP = 10.200
STD.DEV. OF PORT DELAY PER SHIP = 10.663
MEAN PERCENT OF TIME SPENT IN PORT = 17.17 %
MEAN ROUTE TIME : = 59.40
STC.DEV. OF ROUTE TIME . = 27.10
R; T=2.55/3.74 13:09:23

SSTOP

Table 4.8: 5 Ships, Data Set B

re

-97-~

dropped by more than 13%. This indicated that the scheduling constraints
were too tight for such a small number of ships to handle with reasonable
ship utilization. We therefore further refined the cargo sizes, as
indicated in Column C, Table 4.1, to form Data Set C. In this data set no
cargoes require multiple ship-trips.

Summary statistics from this third data set appear in Tables 4.9,
4,10 and 4.11. They show a substantial improvement in performance for the
5-ship case. In the best of three seed-cargo configurations, 96% of the
tons and 95% of the cargoes are delivered. For this case ship utilization
is 6.2%, indicating many more cargoes could be transported with apmropriate
scheduling requirements. In addition, the percentage of on-time delivered
cargoes hovered around the 40% level, which is relatively low. We opted
not to try seven-ships of this case because of the already-low shi‘p
utilization.

A closer look at the schedules associated with the above runs
reveals several interesting observations. Take for instance ship # 6 of
run # 1 (displayed in Table 4.2). This ship picks up cargo # 6 from
Charleston, S.C. on day 25 and delivers that cargo in Malaysia on day 47.
It subsequently travels on ballast to Okinawa where on day 57 it loads
three cargoes: Cargo # 17, and parts of cargoes # 15 and # 16, both of
which are large-size and have to be split. Cargo # 15 is split in two,
10,850 tons carried by the above ship (#6), and 13,800 tons carried by ship
5 several days later (see also Table 4.2). Cargo # 16 is carried
entirely by ship # 6, but in four (4) rountrips (Okinawa to Malaysia),
because of its even larger size (51,880 tons, compared to a capacity of

19,125 tons for ship #6). Ship # 6 completes its trip on day 88, after

-98-

(AR R A E R R R R AR R RS R R S R R R A S R R A R R R R R R N R R R R R N RSN R E R R R R A

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 8.45
STD.DEV. CARGO TARDINESS = 8.77
MEAN WEIGHTED CARGO TARDINESS = 53377
STD.DEV. WEIGHTED CARGO TARDINESS = 90051
PERCENT CARGOES DELIVERED ON-TIME * 30.00 %
PERCENT CARGOES DELIVERED LATE = 70.00 %
PERCENT COMPLETELY DELIVERED CARGOES = 95.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 5.00 %
PERCENT UNDELIVERED CARGOES = 0.0 %
PERCENT TONS DELIVERED ON-TIME = 21.12 %
PERCENT TONS DELIVERED LATE - 69.30 %
PERCENT TONS UNDELIVERED = 9.59 %

IR R AR E R ERER AR RS R R RN AR R R RS R AR RNl R RN

(IR R R R SRR A RN R R E SRR R R SRR R S A SARE RS R RS E R R R SRR NS

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY s 0.98
MEAN WEIGHTED ROUTE CIRCUITRY e 0.87
MEAN SHIP UTILIZATION = 1.80 %
MEAN DISTANCE TRAVELED = 30616
STDO.DEV. OF DISTANCE TRAVELLED = 9769

MEAN TON-MILES = 1.62E+08
STD.DEV. OF TON-MILES = 8.29E+07
MEAN SHIPPING DISTANCE = 7513

MEAN PORT DELAY PER STOP e 0.667
STD.DEV. OF PORT DELAY PER STOP = 4.165
MEAN PORT DELAY PER SHIP = 5.600
STO.DEV. OF PORT DELAY PER SHIP = 11.971
MEAN PERCENT OF TIME SPENT IN PORT = 7.53 %
MEAN ROUTE TIME = 74.40
STD.DEV. OF ROUTE TIME = 24.32

R; T=2.45/3.53 13:19:05
$5T0P

Table 4.9: 5 Ships, Data Set C

-39~

(AR A R R R R RN SRR AR RS E R R R RS RSN R Z N SRR R R RSN EREEE RSN ENE N

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS = 11.00
STD.DEV. CARGO TARDINESS = 19.34
MEAN WEIGHTED CARGO TARDINESS b 83080
STD.DEV. WEIGHTED CARGO TARDINESS = 175713
PERCENT CARGOES DELIVERED ON-TIME = 45.00 %
PERCENT CARGOES DELIVERED LATE = $0.00 %
PERCENT COMPLETELY DELIVERED CARGDES = 85.00 %
PERCENT PARTIALLY DELIVERED CARGOES = 0.0 %
PERCENT UNDELIVERED CARGOES = 5.00 %
PERCENT TONS DELIVERED ON-TIME = 30.21 %
PERCENT TONS DELIVERED LATE b 65.74 %
PERCENT TONS UNDELIVERED = 4.05 %

[AR R EE SN EE A SRR R AR R R R R R AR RE R R AR R R AR R R R RN R RS

[EEE R R RN N R E R E NS EEE R AR AR R ERERL R R R R RS RN ERRREER RN ENNERN]

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY = 1.15
MEAN WEIGHTED ROUTE CIRCUITRY = 1.06
MEAN SHIP UTILIZATION = 6.18 %
MEAN DISTANCE TRAVELED = 35109
STO.DEV. OF DISTANCE TRAVELED = 15253

MEAN TON-MILES = 2.20E+08
STO.DEV. OF TON-MILES = 1.20E+08
MEAN SHIPPING DISTANCE = 9607

MEAN PORT DELAY PER STOP = 1.100
STO.DEV. OF PQORT DELAY PER STOP = 3.529
MEAN PORT DELAY PER SHIP = 8.800
STD.DEV. OF PORT DELAY PER SHIP = 6.058
MEAN PERCENT OF TIME SPENT IN PORT = 10.81 %
MEAN ROUTE TIME = 81.40
STD.DEV. OF ROUTE TIME = 36.77

R; T=2.34/3.38 13:22:33
SSTQOP

Table 4.10: 5 Ships, Data Set C

-100-

LA ER R SRR R NS R R R A R A A R R R R R R R R R E R R R E N RN RN

SUMMARY OF CARGO STATISTICS

MEAN CARGO TARDINESS

STD.DEV. CARGO TARDINESS

MEAN WEIGHTED CARGO TARDINESS
STD.DEV. WEIGHTED CARGO TARDINESS
PERCENT CARGOES DELIVERED ON-TIME
PERCENT CARGOES DELIVERED LATE

PERCENT COMPLETELY DELIVERED CARGOES

PERCENT PARTIALLY DELIVERED CARGOES
PERCENT UNDELIVERED CARGOES

PERCENT TONS DELIVERED ON-TIME
PERCENT TONS DELIVERED LATE

PERCENT TONS UNDELIVERED

L]
0

.00
14.76

45.00 %
45.00 %
.00 %
5.00 %
10.00 %
34.95 %
48 .89 %
16.16 %

"N HNH N NR RN
]
w

IR R S R ENE RS R R EEN R E R AR R EERE R E SRR R AR R E SR R R R SRR RN ENE N

LA A R R E N AR E R RN EEEENEE R A S NE R R EE RN E SR E R AN AN SRR EREEERENERENNESE]

SUMMARY OF SHIP STATISTICS

MEAN ROUTE CIRCUITRY

MEAN WEIGHTED ROUTE CIRCUITRY
MEAN SHIP UTILIZATION

MEAN DISTANCE TRAVELED

STD.DEV. OF DISTANCE TRAVELED
MEAN TON-MILES

STD.DEV. OF TON-MILES

MEAN SHIPPING DISTANCE

MEAN PORT DELAY PER STOP
STO.DEV. OF PORT DELAY PER STOP
MEAN PORT DELAY PER SHIP
STD.DEV. OF PORT DELAY PER SHIP
MEAN PERCENT OF TIME SPENT IN PORT
MEAN ROUTE TIME

STD.DEV. OF ROUTE TIME

R; T7=2.46/3.55 13:24:19

ssToP

0.99
1.12
12.54 %
29644
9223
1.96E+08
9.84E+07
9807
2.105
8.036
16.000
17.875
22.10 %
72.40
26.43

‘Table 4.11: 5 Ships, Data Set C

-101-

making these four roundtrips from Okinawa to Malaysia. Notice that this
ship travels from the East Coast of the U.S. to the Pacific practically
empty, since cargo #6 is only 30 tons. This is due to the fact that cargo
6 was assigned arbitrarily to ship # 6 as a seed assignment by the user,
and that no other cargoes were assigned to travel on the same ship on its
way to the Pacific because of incompatible schedules.

Similar interesting schedule patterns were observed in other runs
of MORSS.

In the rest of this section we further analyze the performance of
. MORSS based on the results of the previous discussion. First, it is
evident that the performance of the system depends highly on the particular
data set being used. Much of the discussion in the first part of this
section focused on tailoring the data set to a small fleet size. It is
unclear what the a priori limits for feasibility are. For example, cargoes
#2 and #9 seem to be "difficult" cargoes in the sense that they are often
at least partially unscheduled. Many factors are involved. Boundary
conditions, cargo size, seed selection and interactions between large
cargoes may account for much of the difficulty. In addition, the
parameters involved in the utility functions need detailed calibration
themselves (see also Chapter 5).

To aid in the analysis of the runs, MORSS camputed a large variety
of statistics at the end of each run. The most important ones are
summarized in Table 4.12, for each of the runs. These statistics are the
measures by which we evaluated the performance of the system. The most
important of the cargo statistics are the percentages of cargoes

(delivered) on time and tons (delivered) on time. These most clearly

S3INSTY JO Araunns 1z JI9VL
|
N
o
—
]

A h Al 00°6 v8°€8 S6°VE 00°S8 00°SY T'e’'6‘L’'s S o) 0T
x81°9 00°1T G6°G6 12°0¢€ 00°G6 00°G¥ 8‘96’e’1 S o) 6
x08°T Sv°8 v 06 Z1°1¢ 00°56 00°0¢ S‘y'ez’'t S 0 8

29°6 gy ¢ 90°8S ST ¥ve 00°0L 00°Sb 8L'9'v'C S 2 L

080T S9°T1 L6°LL 9L°0¢C 00°GL 00°0¢ 6'8°¢'2’'1 S a 9

Ly 1T GG°8 G8°L9 7€ 00°GL 00°0S 6°L°G'e’'T S g g

08°9 GE°S S0°T6 €2 8h 00°06 00°SS 9'2'6'8'S'c'T L g 174
¥89° ¥ SH°S £6°28 £V 6% 00°06 00°09 9'C'6°L'S'C’'T L d €

L8°C 06°S Lv°Z8 SL LY 00°G8 00°0S CTIT'6‘L'S‘E’T L g Z

£€6°T1 08°8 01" LT ¥8°01 00°SL 00°G¢ L'9's'v'c'2'T L "4 T

2 (shep) AREAAT T SWMLL NO ARIFATTIA TIL NO
NOILVZITLIA SIEOOIYD ALWI d0d SNOL SNOL SAORYD SHAORIYD sl '2’'T SAIHS ¥0d SdIHS IJS CON
dIHS SSANTQIVL NYIW $ 2 2 2 SHOOEYD aIAS # viva N

-103-

reflect the primary concern of the MSC to deliver cargoes on time.

Among the ship-related statistics, route circuity, ship utilization
and percent of time spent in port are the most important. By "route
circuity” we mean the ratio of the total distance traveled by a ship
divided by the sum of POE-POD distances for all cargoes carried by the
ship. Thus, a low circuity (less than half) means the ship carries many
cargoes most of the'time, while a high circuity (more than 1.5) means the
ship carries few cargoes at a time, and is deadheading a good part of the
time also. These measures are important as indications of the efficiency
at which the system operates.

We now turn to a discussion of the correlation between the
statistics generated by MORSS. Plots of some of these appear in Figures
4.3 to 4.6. From Figures 4.5 and 4.6 we see that ship utilization amd the
percentage of tons delivered are not correlated with the percentage of tons
delivered on time. Figure 4.3 shows a strong linear correlation between
the percentage of on-time cargoes and tons. Figure 4.4 indicates>the
percentage of cargoes cn time is close to being independent of the
percentage delivered. These preliminary results indicate that ship
utilization is not a good performance measure for problems with tight or
infeasible scheduling requirements. This result will be checked more
closely with a larger feasible set of cargo movement requirements during
the calibration procedure.

We propose several bounds on system performance. First, ship
utilization has a maximum of the order of 50% with the given PCE-POD
structure. This is because of traveling on ballast from POD to PCE.

Practically speaking, this bourd is not achievable either, because of the

§ cargoes on time -104-

4

60 -

50-1 ‘ o

40‘

30 00

NN

% tons

Figure 1.3

% cargoes on time
'y

60 o

50 = O O

40 o

on time

% cargoes

60 70 80

Figure 4.4

) P delivered

90 100

ship -
util‘ization (%) ' -105-~

14 4

12 o

oo

~g= % tons
10 20 30 40 50 on time

% tons de]_.ivered

100 A

90 o} o
80 4 (o)
70 o (o)
60 - o

50
40
30 4
20 -

10 +

% tons
T X T 1 T on time

Figure 4.6

-106-

necessity of multiple cargoes on the same ship. In this case the ship is
not full between deliveries, Second, route circuity has a maximum of 2.0,
corresponding to the case where a ship carries only one cargo at a time.
Both of these quantities are bounded below by zero. Third, each data-set
has its own particular structure. In many cases this results in bounds on
the number of cargoes or tons that can be delivered on time.

Given these bounds, it is worthwhile to note that the best ship
utilization achieved in these runs had a value of 12.54% (in run # 10).
This means that the ships in that sealift problem instance averaged about
25% full while transporting cargo. This is a reasonable performance for
such a tight problem, where the average late cargo was 9 days overdue.
This points cut the difficulty in establishing norms for the expected
performance of the system under MORSS or any scheduling algorithm. This
issue will be further explored in a continuing phase of the project (see

also Chapter 5).

-107-

CHAPTER 5

CONCLUDING REMARKS

5.1 Introduction

This chapter provides some additional details on miscellaneous

other activities related to this project (section 5.2) and concludes by |

describing directions for further research on the MSC operational problem

(section 5.3).

5.2 Other Project-Related Written Products

There have been several additional self-contained products, written
by members of the MIT project team, and related to this project. These
include an annotated bibliography, - by Thompson (1983) -, two M.Sc.
theses, - by Badjis (1982) and Jeng (1984), and a PhD thesis, - by Kim
(1985).

In Thompson (1983), a bibliography of about 70 references in this
general problem area is described. This bibliography is maintained in the
MIT project library and updated at regular time intervals,

The M.Sc thesis of Bardjis (1982) was completed a few months before
this project was initiated, and hence cannot be considered an "official”
product of the moject. However, we include it here because to cur
knowledge it was the first attempt to look into the MSC operational problem
from a rigorous analyticél standpoint. The thesis developed exact
mathematical programming formulations for a spectrum of variants of the MSC
problem, by examining a variety of objective functions, constraints, etc.

Upon initiation of the project, the MIT team decided not to use an exact

-168-

aprroach (for the reasons outlined in Chapter 2), and hence these
formulations were no longer pursued.

The M.Sc. thesis of Jeng (1984) took the "sequential insertion”
algorithm developed by Jaw et al (1984) for the multi-vehicle many-to-many
advance-request dial-a-ride problem with time windows, and attempted to
adapt it to the MSC operational problem. As described in Chapter 2, the
"sequential insertion" algorithm is a vefy efficient procedure for
scheduling a fleet of vehicles in a dial-a-ride environment, and
computational experience with the procedure has been very satisfactory.
Jeng's work dealt with necessary modifications in the procedure so that it
could be applied to a version of the MSC operational problem. A generic
canputer -program was written to that effect, but was never implemented on
-the MSC-supplied or other data.

»’I'he PhD thesis of Kim (1985) shed light on some very interesting
theoretical aspects of the MSC problem. Specifically, it recognized that
in the absence of time constraints (EPT's, EDT's and LDT's), the routing
subproblem of the MSC problem becames usually very easy to solve, given
that ports are located "along the shoreline". Kim them defined the
"shoreline" distance metric as a special case of the Euclidean distance
metric and imposed time constraints on the problem. He then developed a
class of heuristic (approximate) algorithms for the single-ship "shoreline”
problem with time constraints, and derived the worst-case performance of
these algorithms (in terms of deviation fram the theoretical optimum). For
the special case in which all ports are located on a straight line, he
showed that depending on the objective function ard the constraints of the

problem, the problem can be either solved exactly by a "polynomial”

-109-

algorithm, or belongs to the class of "NP-complete" problems (for which no
polyromial algorithm is known to exist.) Kim's work has opened some very

interesting directions for further research on this class of prolems.

5.3 Conclusions and Directions for Further Research

We conclude the main body of the report with our conclusions and
our ideas on directions for further research in this area.

To our knowledge, today the MORSS algorithm represents the only
methodology that has been designed and developed specifically for the MSC
operational routing and scheduling problem. As.smted in the moject's
statement of objectives (see Chapter 1), the MIT team set forth to
investigate a class of sealift routing amd scheduling problems, develop,
analyze and test solution algorithms for such problems, and work with the
MSC and others so as to increase the level of knowledge of these problems.
As a result of aur efforts within the past two and a half years, we feel
that progress in the project has been in accordance with the above
objectives and with the schedule we had proposed to accomplish them. Not
only do we know much more about the structure and complexity of this
problem now than we did when this project was starting, but we do possess a
methodology and an associated computer program that can form the basis for
future implementation by the MSC. We also feel that we have made progress
regarding the stated longer-term objectives of this project, that is, to
develop a procedure that could be ultimately implemented by the MSC,
enhance the state of the art in the solution of complex, large-scale
transportation problems, and advance the state of knowledge in interactive

user-friendly algorithms. In fact, we feel that many of the mrinciples and

methods we have adopted for this project could be used in other
environments as well.

There is no question that ouf investigation to date has left
considerable room for both further analysis of the MSC operational problem
and algorithmic development of MORSS. 1In the following we describe a set
of possible follow-on activities which we consider essential for further
ogress in this area. These activities would build upon the work
accomplished to date, by targeting specific issues that have been either
addressed only superficially, or not addressed at all by this mroject thus
far. We should emphasize that all of these activities intentionally fall
into the category of research, creation of new knowledge, and methodology
develomment, as opposed to real-world implementation of a software package
(a possible exception is Task 6, which addresses implementation issues to
same extent.) |

The description of these activities goes as follows:

Task 1: Investigation and Caliberation of Alternative Utility Functions:

Although considerable effort has been already spent to come up with
utility functional forms that make sense for this problem, it is
conceivable that other classes of functions could be used so as to (a)
model the MSC decision process more realistically, (b) decrease the
required computational effort and (c) achieve improved solutions. It is
clear that such a task would involve an increased degree of interaction
with MSC personnel, so as to incorporate their suggestions and other
feedback into the algorithm. By "calibration" we mean the determination of
the most apgropriate values of the parameters of those utility functions.

Since those values are user-inputs, interaction with the MSC is essential

-111-

here too.

Task 2: Investigation of Cargo Assignment Interactions: MORSS currently

assigns utilities to potential cargo-ship assignment pairs without taking
into account possible interactions of unassigned cargoes with ocne another.
Thus, it is conceivable that while each of cargoes i and j is itself a
good assignment for ship k, assigning both of them to the same ship is not.
MORSS currently handles this problem by (a) limiting the number of
tentative cargo assignments simultaneously made to a ship at each
iteration, and (b) by "deassigning” those cargoes fram a ship's list of
tentative assignments that do not interact well. This task would
investigate other, computationally more efficient methods for taking such
possible interactions into account. Possible approaches in this context
include the development of a "pre-opt" procedure which would eliminate
unlikely arcs in the transportation network, and/or the construction of a
"swapper, post-opt" heuristic which would eliminate poor combinations of
cargoes once the assignments are made.

Task 3: Development of More Sophisticated Seed Selection Methods: Seed

selection is considered to be an important step in MORSS. The current
procedure accamplishes such selection by solving a one-to-one assignment
problem involving ship amd cargo mpairs whose utilities have been computed.
We would like to explore and test alternative seed selection methads.
Those might include selecting seeds so as to maximize some measure of
"spread-out-edness”, a measure which, by definition, involves interaction
among seed cargoes. A subtask here might consist of developing more
advanced aggregation/clustering methods to facilitate the seed selection

process. Finally, we would like to investigate the sensitivity ofthe

~-112-

overall schedule to seed selection rules.,

Task 4: Modeling of Queueing Effects at Ports: Ship queueing at ports

during periads of congestion is likely to be a very significant issue
during the actual execution of the schedule. MORSS currently includes a
term in the utility function that "measures"™ port congestion, but it is
cleaf that this problem merits a far more extensive investigation. We
propose to develop methods that predict future queueing effects at ports
nbre accurately. We anticipate that in doing so we shall need more
accurate information regarding the structure of ports amd their throughput
as a function of demand rate. This analysis will move away from the
essentially deterministic approach that has been used so far, to the
modeling of probabilistic effects. "Optimal" loading/unloading/queueing
disciplines would be investigated so as to improve port utilization and
reduce overall delays.

Task 5: Sensitivity Analysis: Other than user-specified parameters

calibration, we would like to perform sensitivity analysis on many
important categories of the input data, and answer "what if" questions that
would help obtain further insights into this problem. Such data include
due dates for cargoes (i.e., "what if the due date for this cargo is moved
backward by one day?", "what if the NATO-controlled fleet is made
available?", etc.

Task 6: Further Testing of Algorithm and User Friendly Implementation: We

would like to further develop the interactive portion of MORSS. This
- includes the capability of modifying schedule assignments, adding/removing
ships and cargoes, and a grarhics feature. Our plan would be to transfer

MORSS from the MIT IBM system to the new Apollo coclor-grarhics

-113-

microcomputer at the Operations Research Center (acquired by a grant from
ONR). This task would also call for extensive interaction with MSC so that
the ability of the MSC to eventually use the algorithm is maximized.

At the time of the writing of this report, the MIT team is engaged
in Tasks 1 and 6. All other tasks are to be left for a future phase of

this project.

-114-

REFERENCES

Bardjis, C.S, 1982, "Mathematical Programming Formulations of a Sealift
Scheduling Problem," M.Sc. Thesis, M.I.T., Department of Ocean
Engineering, May.

Baodin, L. and T. Sexton, 1982. "The Multi-Vehicle Subscriber Dial-A-Ride
Problem." Management Science Statistics Working Paper No. 82-005,
University of Maryland at College Park.

Fisher, M.L., A.J. Greenfield, R. Jaikumar, P. Kedia, 1982. "Real-Time
Scheduling of a Bulk Delivery Fleet: Practical Application of
Lagrangian Relaxation", Report 82-10-11, Decision Sciences Dept.,
University of Pennsylvania.

Fisher, M.L., M. Rosenwein, 1984. "Sceduling a Fleet of Bulk Transport
Ships", TIMS/ORSA meeting, San Francisco. May.

Jarvis, J.J. and H.D. Ratliff, 1980. "Interactive Heuristics for Large
Scale Transportation Models", D.O.T. Contract TSC-1618, School of
Industrial and Systems Engineering, Georgia Institute of Technology,
August.

Jarvis, J.J. and H.D. Ratliff, 1982. "Preliminary Analysis System for
Closure Optimization Planning and Evaluation (Scope),": Report No.
PDRC 82-22 (for Joint Deployment Agency), School of Industrial
Systems Engineering, Georgia Institute of Technoclogy.

Jaw, J.J., A.R. Odoni, H.N. Psaraftis, N.H.M, Wilson, 1982. "A Heuristic
- Algorithm for the Multi-Vehicle-Many-to-Many Advance-Request '
Dial-A-Ride Problem, "Working Paper No. MIT-UMTA-82-3, M.I.T. June.

Jaw, J.J., A. R. Odoni, H.N. Psaraftis, N.H.M. Wilson, 1984. "A Heuristic
Algorithm for the Multi-Vehcile Advance-Request Dial-A-Ride Problem
With Time Windows", forthcoming in Transportation Research(B).

Jaw, J.J., 1984. "Solving Large-Scale Dial-A-Ride Vehicle Routing and
Scheduling Problems", Ph.D. Thesis, Dept. of Aeronautics and
Astronautics M.I.T,, FTL REPORT R84-3, June.

Jeng, K.Y., 1984. "Preliminary Considerations on using an Insertion
Algorithm For the Solution of a Sealift Routing and Scheduling
Problem", S.M. Thesis, Dept. of Ocean Engineering, M.I.T., May.

Kaskin, J. 1981. "Suggestions for the Improvement of the MSC Strategic
Sealift Contingency Planning System (SEACOP), Point Paper, MSC.

Kim, T.U., 1985. "Solution Algorithms for Sealift Routing Scheduling
Problems", Ph.D. Thesis, Dept. of Ocean Engineering, M.I.T., May.

Kim, T.U., H.N. Psaraftis, M.M. Solomon, 1985. "Time Constrained Ship

-115-

Routing and Scheduling Problems with an Easy Routing Structure",
EURD-VII Congress, Bologna, Italy, June.

Orlin, J.B., 1983a. "On the Simplex Algorithm for Networks and Generalized
Networks", Working Paper No. 1467-83, Sloan School of Management,
M.I.T.

Orlin, J.B. 1983b. "A Polynomial-Time Parametric Simplex Algorithm for the
Minimum Cost Network Flow Problem”, Working Paper No. 484-83. Sloan
School of Management, M.I.T., September.

Orlin, J.B. and H.N. Psaraftis, 1983a. "MIT Sealist Routing and Scheduling
Project: Progress Report", M.I.T., July.

. Orlin, J.B. and H.N. Psaraftis, 1983b. "Solution Methods for Large-Scale
Sealift Scheduling Problems", ORSA/TIMS meeting, Orlando, November.

Orlin, J.B. and H.N. Psaraftis, 1984. "An Algorithm for Emergency Sealift
Routing and Scheduling Problems", TIMS/ORSA meeting, San Francisco,
May.

Psaraftis, H.N., 1980. "A Dynamic Programming Solution to the Single
Vehicle Many-to-Many Immediate Request Dial-A-Ride Problem",
Transportation Science. Vol. 14, No. 2, May.

Psaraftis, H.N., 1983a. "An Exact Algorithm for the Single-Vehicle
Many-to-Many Dial-A-Ride Problem with Time Windows", Transportation
Science, Vol. 17, No. 3. August.

Psaraftis, H.N. 1983b. "Analysis of an O(Nz) Heuristic for the Single
Vehicle Many-to-Many Euclidean Dial-A-Ride Problem", Transportation
Research, Vol. 17B, No. 2.

Psaraftis, H.N. 1983c. "k-Interchange Procedures for Local Search in a
Precedence-Constrained Routing Problem", European Journal of
Operations Research, Vol. 13, No. 4.

Psaraftis, H.N. and J.B. Orlin, 1982. "Analysis and solution Algorithms of
Sealift Routing and Scheduling Problems", mroposal to ONR, October.

Psaraftis, H.N., J.B. Orlin, D. Bienstock and P. Thompson, 1985. "The
Operational Routing and Scheduling Problem of the Military Sealift
Command", TIMS/ORSA Meeting, Boston. May.

SAI, 1982. "Seastrat Scheduling Algorithm for Improving Lift (SAIL)
Modeling Aporoach Definition”, report to MSC by Science Applications,
Inc. September.

SEASTRAT, 1981. "SEASTRAT Development Plan", MSC. July.

Scott, J., 1982. "Department of Defense Ocean Transportation Routing and
Scheduling Requirements", Cargo Ship Routing and Scheduling Symposium,

-116-

Washington, February.

Thampson, P.M., 1983. "MIT Sealift Routing and Scheduling Project: An
Annotated Bibliography of References". MIT, September.

Wilson, N.H.M., H. Weissberg, 1976. "Advanced Dial-A-Ride Algorithms
Research Project: Final Report"”, Report R70-20, MIT Dept. of Civil
Engineering.

Wilson, N.H.M., N.H. Salvin, 1977. "Computer Control of the Rochester
Dial-A-Ride System", Report R 77-31, MIT Dept. of Civil Engineering.

-117-

APPENDIX A

DATA STRUCTURES

A.l. Introduction

This appendix is devoted to describing the data structures used in the
MORSS algorithm. The MIT team spent a considerable amount of effort to come

up with a data structure design that allows for fast data manipulation, robust
data cross-reference, maximum accessibility for the interactive user, ard ease
in future program expansion. We found the use of PASCAL very useful in that
respect (compater languages such as FORTRAN may be deficient in implementing
this type of data structure design).

The data structures utilized fall into 4 major categories: Complex
Based, Port Based, Cargo Based, and Ship Based. These structures are
(roughly) interconnected as shown in Figure A.l. These interconnections are,
in fact, two-way. The next few pages elaborate on the data structures and
their interconnections. For a summary, refer to charts in Figures A.2 and
A.3. The following constants (assumed part of input, contained in a file) are
used throughout:
NIMMP = number of complexes

MAXCRG = maximum number of cargoes

]

MAXSHP maximum number of ships

INSUP = maximum number of complexes in a super-camplex

CNGPER = maximum number of "congestion periads”.

-118-

obxeo Axxeo jeyz «drys qr

SdIHS

7'V aanbtg

XoTdwoo
Je soobiro Qr

XoTdWoD UTY3ITM S1I04 OF,

SAODIVO

SId0d SEXTTINOD

SNOLLOGANNOD HMNLOMRILS VLVd

-119-

A.2 Ports
The data for each port is stored in a record type UNIT. Each Unit
contains the following data:
UNIT = RBECORD
NAME: four characters; name of port
DEPTH: integer
LENGTH: integer
BEAM: integer
NBRTH: integer, number of berths
KIND: character, A,C,G,etc.
The ports can also be organized into arrays of up to 7 units. This is
so because all complexes contain at most 7 ports. The type of array is GROUP.

GROUP = ARRAY (1..7) of UNIT

A3 Ship Stops
For each ship we keep a linked list of tﬁat ship's stops, as they

occur in time. A stop is defined as one pickup or delivery stop at a given
port. If several cargoes are picked up or delivered successively, a separate
stop is constructed for each. The data for each stop is contained in a record
of type EVENT, pointed to by a pointer of type LINK3:

LINK3 = *EVENT

EVENT = RECORD

P-D: character, P or D (pickup ar delivery)

CARGO: integer, code of cargo .

QUANT: integer, quantity of cargo picked up/delivered

OMPL: integer, code of complex (refer to Section A.4)

-120-

PORT: integer, code of port with complex (refer to Section A.4)
DATEIN: integer, date ship finally docks at PORT
DATEQUT: integer, date ship finally leaves PORT
WAITIN: integer, wait before docking due to congestion
WATTOUT: integer, wait before leaving due to congestion
SLACK: integer, wait due to arrival previous to EPT or EDT
RMRTON: integer, masurement tons of residual capacity after stop
RSHTON: integer, short tons of residual capacity after stop
RSQFT: integer, square feet of residual capacity after stop
NEXT: 1link3, to next stop in schedule
PREV: 1link3, to previous stop in schedule
MATCH: 1ink3, to corresponding pickup or delivery of same cargo
In addition, each stop is also addressable from the corresponding cargo
record. For each cargo we keep a local linked list of all the
pickups/deliveries of that cargo. Each record in the list is of type PCKUP <~
and is pointed to by pointers of type LINK4.

LINK4 FCKUP

"

PCKUP RECCRD
SHIPNO: integer, number of ship
EVNT: Link3, to pickup in SHIPNO's schedule

NXT: to next record

A.4 Cargoes
For each cargo we keep a record of type MVT pointed to by pointers of

type LINK1.

LINKL =P myT

-121-

MVT = RECORD
KEY: integer, ocode assigned to cargo
ORGOMP: integer, complex of origin of cargo
DESQMP: integer, destination complex of cargo
ORGPRT: integer, origin port of cargo
DESPRT: integer, destination port of cargo
EPT: integer
EDT: integer
LDT: integer
MSRIN: integer, measurement tons of cargo
SHRTN: integer, short tons of cargo
HVYLFT: integer, heavy lift code
LOADED: boolean, TRUE if we have completely loaded cargo
REMMSR: integer, measument tons still to be loaded
REMSHR: integer, short tons still to be loaded
REMSQ: integer, square feet still to be loaded
PFTYPE: integer, preferred ship type
ATTMPT: integer, number of loading attempts for cargo
FSTLDNG: 1link4, points to 1lst loading in local list
LSTLDNG: 1link4, points to last loading in local list
The overall set of cargoes is kept in an arrray of type MVIPTR:
MVTPTR = ARRAY (1..MAXCRG) OF LIKN1
Finally, at each complex we keep a linked list of the cargoes leaving

from the complex. The records are of type CRG, pointed to by pointers of type
LINK2.

LINK2 = *CRG

-122-

CRG = REBECORD
CORR: integer, ocode of cargo (=Key in MVT record)

FOLL: Link2, next cargo in list

A.5 Camnplexes
The data for each complex is kept in a record, of type SEVRL.
SEVRL = RBECORD
CODE: 5 characters, name of complex (i.e. S5EATB, etc.)
NPORTS: integer, number of ports
PORTS: GROUP, (ports at complex, Section A.2)
NCRG: integer, number of cargoes leaving fram complex
FCRG: LINK2, first cargo is linked list (Section A.3)
ICRG: LINK2, last cargo in linked list
CNGST: Array (1..CNGPER) of integer, congestion level at complex
DIST: Array (l..NUMMP) of integers, distances to all other comiplexes
The SEVRL records are gathered in an array of type HUBS, and the
supercomplexes are stored in records of type AGGOOMP; themse_lves arranged in
an array of type ALLAGGC.
HUBS = ARRAY (1..NUMMP) of SERVL
AGGOOMP = RECORD
N-COMP: integer, number of complexes
INDEX: Array (1...INSUP) of integer (indices of the complexes
as they appear in HUBS)

ALIAGGC: ARRAY (l..NUMOMP) of AGGCOMP

-123-

A.6 Ships
Each ship's data is kept in a record of type BOAT, pointed to by a
pointer of type LINKS

LINKS +BOAT

BOAT = RECORD
CODE: integer, code assigned to ship
SHPT: integer, ship type
DRAFT: integer
LNGTH: integer
BEEM: integer, beam (deliberate mispelling)
BOM: integer
SPEED: integer
MINCAP: integer, metric ton capacity
STNCAP: integer, short ton capacity
FTCAP: integer, square feet capacity
FSTOP: LINK3, first stop in schedule
LSTOP: LINK3, last stop.in schedule
NXTAV: ARRAY (1..2) of integer, current fully loaded period
AVO: ARRAY (1..NUIMMP) of integer, time to complex
ID: integer
GRID: integer
NISC: integer
FLEET: integer
YEAR: integer
CRGUTIL: integer, utility of last assignment
The pointers to the ship records are lfept in an array

BOATPT = ARRAY (1..MAXSHD) OF LINKS

-124-

A.7 An Illustration

A graphical representation of cargoes and ships data structures
appears in Figure A.2. In this figure, cargo j leaves from complex Oj and

goes to complex D This cargo is split (totally) between ships I and H.

e
Similarly, cargo k goes from Ok to D and is being carried - only
partially - by ship I.
Ship I's only stops are to pick up and deliver parts of cargoes j and
k. A graphical representation of the data structures for complexes, ports and
cargoes appears in Figure A.3. In that figure, cargoeé jl' SPYERE and j4 all

leave from complex I ard from ports 1,3,2,2, respectively at complex I.

A.8 Some additional data structures and common names of variables

During a run of the optimization algorithm for network flows (see
Chapter 3 and Appendix B for further details), a ship may be assigned at most
4 cérgoes. (4 could be changed to any desired constant). We keep track of
the assignments, for a given ship, in records of type PRSHP.

PRSHP = RECORD

SNIM: integer, number of ships

CNUMS: ARRAY (1..4) of integers, cargoes assigned to ship
LOSTS: ARRAY (1..4) of integers, costs of assignment
PICKS: ARRAY (l..4) of LINK3, pickups of assignment
DELVS: ARRAY (1..4) of LINK3, deliveries of assignment

CQUNT: integer, number of cargoes actually assigned to ship

Constants: NJ = 50

(qZ v *brd uo penuTiucd ‘D ‘d ‘Y)

S2IN3ONI}S e3e(] SAIUYS pue sa0bae)

1eg 'y aanbrg

U
RIOXYIN

-]

« S90bIED 03

sxojutod JO YILALAW

adX3y jo Aeixy

&A.Illo XN | @ ONTLLST
@ ONJTLLSA
0 0€— < ®
. d = QIaVOT
I ONdIHS { :
A = doSAd
15 = @O0
) < ¥ = KDA
n <
o
1-& /
0
LxN e LN @ DRI TIST
oc— -0 WNTLLST
d ® —® N)
I = QIaQuoT
H ONJIHS I ONdIHS LT :
(g = dHosdd
A0 = JDNO0
<@ [
(= xd i
V @ <
IAN ©dA3 JO spaoosy
T # obxeD
g Biee)
30 P10 [Qymry— @

e 1]

-126-

= %w%%_

seanjonns ejeq sdrys pue ssobie) :qz ¥ 2anbTg

H dtys jo Qou;m\ummﬂ o} #

< <
s S S o
AT @1 ATId @+
. e .

—® IXAN |/ -9 _ wﬁz @ dOLS1 . \0 o
\’ hD HM ﬂH% L4 - - mnc = <F%u 'll. mguwnw .
: T = 00a : _
{ = 09w : c——@ 1
a d-4d d d-d H = 3a00
L P
< < - .
[e Y
HOLYW & IDIVW OF_}-® HOLw I/i‘ HOLYW . . q
T @] ety = ATId @ ATId @+>(/) .m
= @ . ® 1N e LXAN —@ QLS'T :
: S H : P dOLSd .
T =130 T = T30 0 = 14D .monq%,o%l
T T : - : I :
C = 00D X = ONVD M = 004D = oNvD . ©INIT H—
- =q - - - d=a-d T = ad00
a=dg d ad (€ d d d | - .«.ﬂ r .
(095) .
/ Jo px M %
7@ 1
sprooex drys o3 szajurod M *HMMMW SANI'T
30 IdIvod °dA3 3O ARRIV 30 PIoo

-127-

T = Jdd™0

I = dWOOMO

It = A1

sa0bIR) pue s3I0d ‘sexordu) :f'y oanbrg
dADWNN # XoTdwoD
JOJ pIooay
JWOWNN
<
*
v
<
K ISTa
in«.qqom ® TI02| +® TIOZ| A® TIOZ :
r\ _\ @ RDC
vL=p100| | (=300 ZE=p10D TE2RI0D Me—y 530
P=0N
[, ORI VORI ORI |
I XoTdupo woxJ 7\, T .
ButapeT seobied Jo 3sT] s . . :
\\ ANVIN ANYIN ANVYIN
7/ €104a | zmi0d | Tm0d
£ = SIJOd
4000
T
T # xo1du)
I0J paoooy

T

-128-

NV = 50
NU and NV are upperv bounds on the number of ships and cargces,
respectively, in a given time window.

ARRSHP

ARRAY (1..NU) of integer

ARRCRG

ARRAY (1..NV) of integer

Arrays of type ARSHP and ARRCRG will carry the ships and cargoes in a
given time window respectively (we refer to these arrays as cargostack and
shipstack). In the present implementation, the array of ships will be
constant (i.e. does not change with time windows).
BARR1 = ARRAY (1..NU) of boolean

After the optimization and assignment/deassignment in a time window,
BARR] (j)=false if cargo j in cargostack was mot assigned. This is used in

setting up the next time window.

-129-

APPENDIX B

COMPUTER PROGRAM ORGANIZATION

B.1l Introduction

This appendix is devoted to giving a hierarchical overview of the
computer programs in the MORSS package. This description does not include
the preprocessing procedures, which.(a) scan the complex and port files and
create a single file containing all the data, and (b) lexicographically
sort the cargoes according to preferred ship type, EPT, EDT, and LDT.

| In general, the data is set up to match the needs of the data
structures in MORSS (see Appendix A). Also, the very top program is a OMS
exec called SCHED which sets up all files for reading and writing and
actually starts MORSS.

Flow charts of the programs and subroutines of MORSS are shown in »
Figures B.2 to B.15. (all of which are at the end of this Appendix). Table B.1
provides an index for those figures and Figure B.l displays same of the conven-
tions used in the flowcharts. A description of the arcuments of each sub-
routine is given in Appendix C.

Subroutines that merit special discussion are the following:

B.2 NETWORK Subroutine

NETWORK has 5 rhases. In phase 1 NETWORK scans (simultaneously)
the shipstack and the cargostack (as those were defined in Appendix A).
For each cargo and ship pair, either the user or subroutine ASSNUTIL decide
whether they are compatible, if they are, what the utility of the

assignment is (as per Chapter 3). If the pair is compatible NETWORK will

-130-

Program or Subroutine Figure Other Subroutines Called
MORSS B.2 READIN, DISPLAY, SEEDS, SCHEDULE
READIN B.3 -

SEEDS B.4 ASSICGN
SCHEDULE B.5 RLLTIME, NETWORK, PERMASSN
RLLTIME B.6 SHIFT, DWN-LOAD
NETWORK B.7.6 PEEKER, ASSNUTIL, FLOSUB, POSTOPT
PERMASSN B.8 SHORT-SORT*, ASSNUTIL, ASSIGN
ASSIGN B.9 UPD-P, QUPD
UPD-P B.10 ADAPT*, UPD-CRG, INSERTS
DWN-LCAD B.11
QUPD B.12
SHIFT B.13.2
UPD-T B.14.2
UPD—CRG B.15

TABLE B.1

Index of MORSS Program and Routines

(*internal routine, not described here).

-131-

FLOWCHART CONVENTIONS

I r—_—-' (DO Loop:
XX | For I: =1 to N DO

| I XK

END
NEXT STATEMENT)

1+ N

NEXT STATEMENT

WHILE
CONDITION

(WHILE Loop)

(IF Statement)

-132-

set up an arc corresponding to the pair .

In phase 2 the arc data is consolidated to form a network (a
bipartite graph) described by a forward-star data structure. In phases 1
and 2 NETWORK also sets up a "translation table" to make the nodes in the
graph correspond to cargo and ship locations in the respective stacks.

In rhase 3, the network data structure is written into a file.

In phase 4, the optimization algorithm (FLOSUB) is run. This
algorithm prints the optimization results into a file (in general, we print
the data into files for run control - in the ultimate version of MORSS,
arguments should be passed directly between programs.)

Finally, in phase 5 subroutine POSTOPT reads in the optimization
results, postprocesses them, ahd returns the assignemnt data to NETWCRK.
in spirit, the network is a bipartite gragh (U,V,E) as shown in Figure
B.7.1, where the set U corresponds to ships and the set V to cargoes.
NETWORK sets up the grarh so that every ship in the graph is connected to
at least one cargo, and vice-versa. Thus, if a cargo in the cargo stack is
incompatible with all ships, that cargo will not appear in the network.
Also, the graph will contain a node corresponding to a "dummy ship" and a
node corresponding to a "dummy cargo" to pick up extra supply or demand.
Every real cargo is connected to the dummy ship and every real ship is
connected to the dummy cargo. The nodes in the graph are labeled by
numbers ranging from 0 to some number N+1, where N= number of real ships +
number of real cargoes. 0 represents the dummy ship and N+1 the dummy
cargo.

Example: Number of real ships=2, number of real cargoes=3. (see
Figure B.7.2).

-133-

A forward-star representation of the grarh is used. We keep the
arrays:

(arc length) HEAD: heads of the arcs

(arc length) CST: cost of the arcs ordered as in HEADS

(node length) FIRST: index of first node (in HEAD) that node is
connected to (0 if none)

(node length) LAST: index of last node (in HEAD) that node is
connected to (0 if none)

(node length) RHS: supply of node. For real cargo nodes, it is -1.
For real ship nodes, NETWORK sets it at 4 (at most 4 cargoes/ship). The
dummy ship can have any RHS (we set it at 0) and the dummy cargo is given
enough demand to balance those of real ship and cargo nodes.

We also keep

NUMARCS: total number of arcs in graph and use

SHIPS-IN-GRAPH: number of real ships in graph

CARGO-IN-GRAPH: number of real cargo in graph

Thus, for the previous example (see Fig. 8..7.2) we have:

HEAD

3,4,3,5,3,4,5

_CST Large, Large,Xx,X,X,X,x (we shall talk about this later)
FIRST=1,3,5,0,0,0

LAST

2,4,7,0,0,0

RHS

0,3,3,-1,-1,-4

Since mot all ships or cargoes in their stacks may appear in the
graph, the node number assigned to (say) a given cargo may be different
from that cargo's position in the cargo stack. To provide translation, we

use the arrays EQUIV and BACK., Given a node j>1, BEQUIV(j) will be the

-134-

position of

“the ship corresponding to j, if j < SHIPS-IN-GRAPH

the cargo corresponding to j, if j > SHIPS-IN-GRAPH

in the shipstack o cargostack, respectively.

For instance, if SHIPS-IN-GRAPH = 6 and BQUIV(2) = 4, node 2 in the
graph will be the 4th ship in the shipstack.

BACK is the inverse function of EQUIV.

As mentioned in Appendix A, the constants NU (=50) and NV (=50) are
upper bounds, respectively, to the number of ships and cargoes in their
stacks. NETWORK initially assumes that indeed there are NU ships and NV
cargoes in the graph. Later this overestimate is corrected and in the same
process the final network preresentation is obtained. We shall refer to
this process as the "contraction". The initial overestimate is also
reflected in errays EQUIV and BACK, as well as in the variable MARK (=
number of arcs in graph). Initially, MARK is set at NV (NEIWORK assumes
that all cargoes are in the graph, so mode 0 - the dumy ship- is connected
to NV nodes.)

In order to know, at aay point before the contraction, which ships
and cargoes are already in the graph, we use the array YES of boolean
values. For i< NL
YES(i) = T if ith ship in shipstack is in graph yet

F otherwise

Similarly, for 1< j< N

- 135 -

T if _'jth cargo in cargostack is in graph yet
YES(j + NU) =
F otherwise

YES is initialized F for all entries.

The main work done before the contraction goes as follows: We
enumerate the shipstack, i.e. we scan STACKSHP(I) for 1< I < SHPNUZ

Given I, we enumerate the cargostack, i.e. we scan STACKCRG(J) for
1 < J < CRGC. |

Suppose, that given I and J, say by calling ASSNUTL we determine that
the pair is compatible. Then: First, we increase MARK by one (an extra arc
in graph). We check to see whether YES (J + NU) = T. Suppose it is not.
That means that the gth cargo has not been found compatible to any previous
ship or that this is the first time we scan cargo J. S50 we:

set YES (J + NU) = T (cargo is now in graph)
set EQUIV (CARGOS-IN-GRAPH + NU) = J (temporarily,
node number CARGOS-IN-GRAPH + NU corresponds to the
Jth cargo)
set BACK (J + NU) = CARGOS-IN-GRAPH + NU

We also check the value of YES(I), and perform similar operations as
above. In addition, if YES(I) was F when checking, arc (I,J) is the first
arc starting from ship I, so we also set FIRST (SHIP-IN-GRAPH) = MARK (ship

I will be the SHIPS-IN-GRAPH th node)

Finally, since I,J are compatible, we also do:

HEAD (MARK) = BACK (J + NU) (set head of new arc)

-136-

After enumerating all cargoes, given ship I, we check the value of
YES(I). If = F, then we know the ship I was found incompatible to all
cargoes, sO it should not be in the graph at all. On the other hand, if
YES (I) = T, then ship I should be connected to the dummy cargo
(temporarily represented by node # -1). So we go:

MARK = MARK + 1 (one more arc)
LAST (BACK (I)) = MARK (BACK I 1is the node that
represents ship I. Arc # MARK is the
last arc starting from ship I)
HEAD (MARK) = -1
Once the double loop (ships and cargoes) is finished, the
contraction begins. First of ail, node 0 (the dummy ship) will be
connected only to CARGOS-IN-GRAPH nodes, not NV nodes, so we go
FIRST(0) = 1, LAST (0) = CARGOS-IN-GRAPH and for 1 < J < CARGOS-IN-GRAPH+J
(The lowest numbers node corresponding to a cargo will be node #
SHIPS-IN-GRAPH+1) .

and EQUIV (J + SHIPS-IN-GRAPH) = BEQUIV (J + NU)

This says that the node previously numbered J + NU is now numbered J
+ SHIPS-IN-GRAPH (remember that the EQUIV array tells us what cargo the
node represents).
Similarily, BACK (EQUIV (J + NU) + NU) = J + SHIPS-IN-GRAPH
An example of the arrays before and after the contraction, for
NU=NV=5 will help clarify the situation (see Figure B.7.3).
We must also contract the HEAD array and reset the FIRST and LAST

errays. To oontract HEAD, we first note that the number of ships in the

-137-

grarh was initially overestimated by CORRTERM1 = NU -SHIPS-IN-GRAPH. So,

if an entry in the HEAD array is

-1 (dummy cargo) 1+ SHIPS-IN-GRAPH +

CARGO-IN-GRAPH
it should become

-1 (real cargo) decreased by CORRTERM

In addition, the original number of cargoes in the grarh was
overestimated by CORRTERM2 = NV-CARGOS-IN-GRAPH. Thus the entire HEAD
array should be shifted left by CORRTERM2, ard similarily, for
1 < I < SHIPS-IN-GRAPH, FIRST (I) and IAST (I) should be decreased by CORRTERM2.
An example, before ard aftér the contraction is shown in Figure B.7.4. The
reader may verify that the graph in question is the one shown in Figure
B.7.5.

To finish the contraction, we must set FIRST=LAST=0 for nodes
corresponding to cargoes, and also take care of contracting the CST array,
setting the RHS array and a few similar things. This will set up the
network, which is printed in a file by writing, in the given order
NS (=SHIPS-IN-GRAPH + 1 = number of sources in graph)

CARGOS-IN-GRAPH (= number of sinks)

NUMARCS (= [AST (SHIPS-IN-GRAPH) = number of arcs)
array FIRST

array LAST

array RHS

array HEAD

array CST
Finally, NETWORK calls FLOSUB and next POSTOPT.
The flowchart for NETWORK is given in a highly abbreviated form, in

Figure B.7.6.

B.2 SHIFT SAubroutine

"Parallel” to the cargostack, we keep an array of boolean entries
(one entry per cargo in the cargostack). After assignments and
deassignments, the entries in this array will be T or F corresponding to
assigned or nonassigned cargoes respectively. SHIFT looks only at the
F-cargoes, and shifts all of those to the beginning of the stack. An
example is shown in Figure B.13.1l.

In addition, SHIFT utilizes two parameters: CRGC and LAST. CRGC is
the total number of cargoes in the stack. The cargoes between LAST+1 and
CRFC are always automatically deassigned (last portion of time window).
Finally, F-cargoes are shifted only when they have not been attempted to be

assigned more than a fixed number of attempts (NATTB).

B.3 UPD-T Subroutine

This procedure creates a dummy schedule for a given ship, in order to
test the utility of a certain cargo insertion. There are 4 main pieces of
data involved, but before describing these, a general overview is given.

Suppose the ships schedule looks like the one shown in Figure
B.14.1(a), where the S;'s are the stops. Suppose we want to insert the
pickup P of the cargo between S, and S,; and the delivery D between S3 and

54. Then UPD-T will first create a schedule that looks like the cne shown

-139~

in Figure B.14.1(b).

Stop S, and the old schedule are not lost, rather the new schedule
is simulated by using special pointers and the old stops.

The first data structure is used precisely to achieve this. In the
program it is called NUTOREC and consists of an array of pointers of type
Link3. NUTOREC(1) points to the simulated pickup (as above). In the
example above, also, we have NUTOREC(4) pointing to the simulated delivery.

After the insertion of the two stops, some of the data contained in
the old stop records will be incorrect (with respecf to the simulated
schedule), for instance the time data. Rather than change the data in the
old stops we keep 2 arrays, NUTIME and NUSLK, which contain the updated
times and slacks for the simulated schedule (in both cases the arrays start
with the new pickup). Finally, array OUTSLK contains the "future slacks".
All the arrays have COUNT entries. In the example above first CCUNT=4, and
after inserting the delivery, COUNT=5.

There are three routines that are used by UPD-T which will not be
described here in detail. They are SHIFT (internal, not to be confused
with procedure SHIFT, described earlier), TRAVERST and SLAXER. TRAVERSE
takes the original schedule of the ship and generates the updated schedule
containing the pickup only. SHIFT adds the delivery to the updated
schedule. SLAXER takes this schedule amd computes the array OUTSIK.

When we insert the delivery, the variable PIACE indicates where in
the updated schedule the delivery will be (counted from the pickup). For
instance, in the example above, PLACE=4. Before, a pointer of type Link3
points to thei stop before which we are inserting the stop (whether pickup ‘
or delivery).

~140-

As a delivered cargo is inserted, the old arrays containing time
slack and stops are preserved in arrays PTIME, PSLK and PTOREC so that they

can be used for the next delivery attempt.

~-141-

MORSS

Start

l

READIN

Reads in data and
initializes structures

DISPLAY

Displays data according
to user-driven menu

Y

SEEDS

Performs seed assign-
ments

A

DISPLAY

l

SCHEDULE

Main body of MORSS

algoritlm

DISPLAY

Figure B.2

-142-

READIN
— e e — e —
Start | We are dealing with Camplex I |
) l
I l READ CODE (
1 > NUMCMP > 1 NPORTS - - = 1
o~ ! | We are dealing l
' with Port J in ! '
\IL I Camplex I | ‘
| J Ny |READ e | | l
READ 1% NPORTS < DEPTH
NUMSUP I “ | BLENGEAMTH { l
I lL l NBRTH
koo | ||
Y] SET NCRG=0 ‘
l FCRG=NIL | I l
FOR EACH SUPER- LCRG=NIL
COPLEX READ] CNGST=0 R
N-COMP »
INDEX READ DIST l
array [array l
y L __l ___________ 1
NOMCRG=0 | o e e e e
lr— [NOMCRG = NOMCRG + 1] -:
Y [CREATE W CERCD RECORD]
|
WHILE | Sizv o g—NUM:RG |
There are more cargoes ggsﬁ HVYLFT=0 l
in Cargofile —r:i——-—'(ORCPRT REMSHR=SHRTN l
| s e
| mT, BT LOADED=FALSE| |
LDT, SHRTN ATTEMPT=0
\ MSRTN, -
e | SOET._PETYPE | |
NUMCRG
i At Camplex # ORGCMP ‘
! - reset NCRG = NCRG+1, l
linked list of
Y l cargo indices l
NUMSHP=0
i . _ _ _ _ _
A Figure B.3a

(A: continued in Fig. B.3b)

]

WHILE
There are more ships
in shipfile and data in
availability file

* READ
I-01

WRITE
I-01

END

*

Figure B.3b

-143-

CREATE NEW SHIP RECORD

Y

ID
NISC

DRAFT
GRID

SHPTPE
Sp
BEEM
BOOM
PICAP

!
SET
SPEED = ROUND (2.4xSPEED)
CODE=NUMSHP
FSTOP=NIL
LSTOP=NII,
TSTOP=NIL
NXTAV([1]=0
NXTAV[2]=100
STNCAP=0
IF SHPTPE=20r3 then set FTCAP =

AVY

array

I-01, user set, controls how much output is generated by MORSS

~144-

SEEDS
START . .
When SEEDS terminates, SHIPNO will be the total number
¥ of ships in use
M |
SET
SHTPNO=1 1 READ |
SHPNUZ=0 | SHIFNO ‘
Y l
v l
| 0 |
SHIPNO > O
WHILE THEN
SHIPNO > 0 S |
o 3
[|
READ
v CRGNO l
- <]
. |
CRGNO > 0
THEN
Y
SET
SHIPPT Pointer to ship # SHIPNO

CRGPPT = Pointer to cargo # CRGNO
SHPNUZ = SHPNUZ+1
ADD SHIPNO to stack of ships

PCKP = NIL
DELV = NIL
Y i
ASSIGN cargo # CRGNO

to ship # SHIPNO

This procedure handles all the
assignmment mechanics.

=-145-
SCHEDULE

START
Sj; CRGC = # of cargoes in cargo stack
CRGC = 0 SEEN = # of cargoes in SEEN so far
SEEN = 0 STPIG = flag, if true run stops
STPFLG = FALSE BANNER = becomes true when all cargoes in cargo list have been
BANNER = FALSE downloaded to the carcgo stack (i.e., the algorlthm
\ has "seen" all cargoes)
REPEAT >,
~
UNTIL p—— — — — —_— e = e
STPFLG = TRUE lI
RLLTIME
17 Sets up new time window.
Returns (among others) updated values of
STACKCRG (stack of cargoes)
T (EPT of last cargo in time window)
CRGC
SEEN
BANNER
Y
Y
IF CRGC = 0 and BANNER is
true
THEN STPFLG = TRUE
l YES User control,
I < T<0? see RLLTIME
l description
NO
NS l B
Figure B.5.a

(A, B: cont'd. in Figure B.5.b)

— —
s e Gty S— B— t——— —— G— — Cmm— G a—— O— ——

~-146-~

IF CRGC >0 and SHPNUZ > 0

THEN
NETWORK

Using cargoes and ships in current time
Wwindow, sets up network, optimizes and
postoptimizes the assignment. Returns:

FLOWS: array of PRSHP records, each
continuing assignment data for a
different ship.

TOTAL: # of ships which have been
assigned a cargo.

IF TOTAL > 0 THEN

PERMASSN

Attempts to make permanent the
assignments given in array FLOWS
returned by NETWORK

Figure B.5.b

s . — —_— .

S e S St Gt G St G e, S @t watet Sy el m—t

-147-
RLLTIME

START
: *r
S

ET CRGCZ=CRGC

v

IF CRGC > 0 THEN

SHIFT

Shifts all cargo currently in cargo
stack to beginning of cargo stack

CRGC=# of cargoes currently in
cargo stack
CRXC2= auxiliary veriable, refer
to description of SHIFT -

Shift takes a cargo stack like

AlgiBlclaipl s

and makes it into
AlBlciplg | gL g

END IF THEN
NOT - READ T T = upper bound on latest EPT of
BANNER " cargoes in next time window
- YES <
o~ ?
NO
READ LIMIT LIMIT = upper boundary on total
of cargoes in next
Y time window
DWN_LOAD
END Puts cargo in the cargo stack, so that no
more than LIMIT cargoes will be in the stack
and so that the highest EPT is T. Sets
[BANNER=T if we reach the end of cargo list
updates SEEN, CRGC
Figure B.6 WET1te CRC
SET LFT _OVR=NIMCRC-SEEN
IF THEN
NCT BANNER WRITE LFT_OVR

ELSE
[WRITE SEEN |

durmmy
ship

real
ships

-148-

>
U Figure B.7.1 v
0 > 3
1 > 4 real

=
—

O ==
cargo

Figure B.7.2

'Rl

BEFORE CONTRACTION:

EQUIV

BACK

NU=S

-149-

5

— . \ (SHIPS IN GRAPH=2

AFTER CONTRACTION:

EQUIV

BACK

F T| T F F|T T F T F
A A

2 3. 1 21 4 .
A A
Y Y

11 2 .1l 6 7 . |8

2 13 1 4 .

1|2 3 4 . .

Figure B.7.3

CARGOES_IN+GRAPH=3)

-150-

BEFORE CONTRACTION:

.

HEAD -l]l -lel7-1]le6] 7 s} || "
0

FIRST N N

LAST e 2} |

AFTER CONTRACTION:

HEAD 3 4 5 3 4 16 3 4 5 6
0

FIRST 1 4 7

LAST 3 6 10

Figure B.7.4

-151-

Figure B.7.5

=152-

NETWORK

AN

User chooses
between

this and this

PEEKER

ASSNUTIL

cost should be

Us~erv decides whether i, j

Computers utility of pair
i, j; if campatible also
returns insertion pointers

!
l
l
I
l
|
l
l
] are campatible and what
|
|
l
l
l
I
|
|

Use data from PEEKER
or ASSNUTIL to begin
setting up network

J— O Gt s g—— —— — G— L o L aned
- Contract
— network
formulation

Ny

Pigure B.7.6a
(A: cont'd in Figure B.7.6b)

-153-

Write
network

onto

file

FLOSUB

Network optimization
raatine.
Documented separately.

Read in
optimization
results

POSTOPT

Translates optimization
results into cargo-ship

assignments

Print
out
assignments

END

Figure B.5.6b

-154~

PERMASSIN
r— — P G S— G Gw—" Ghennt wen— — — S— Go— G Gwe——y o———y ﬂ
ST I Loock at FLOWS[1l] record, ‘
] I let it be SNUM
NS |
1 | PICKS
ey DELVS |
1 » TOTAL 1 COUNT |
— ‘
-
/
~ I
/
— l
ééogm SOR; 1, then * If more than 1 cargo was assigned
== to ship, we sort them by # to get l
Internal procedure, not earliest first
described. Uses bubblesort l
to sort CNUMS array (smallest
to biggest; and rearranges !
PICKS and DELVS to match the
sorting order l
Y |
J ‘
1 COUNT ‘
— S— O— — R R Ce—— C— g ———— S— ne— m—— —— ey —— STwe— g—— —-ﬁ
Write ship # STACKSHP [SNUM] an |
cargo # STACKCRG[CNUMS[J]] l I
User chooses between |[
this, this, and this ll
¥ ! [
ASSNUTIL Reject Acgept assmment. ! l
Assi N using PICKS[3i] & l
Decides whether J DELVS [J] as in- l
cargo-ship as- ertion points]
sigmment is good)] |
and if so, re- l
turns insertion | *Boolean variable FEAS |
pointers. 4 is T if assignment good v l]
Is YES ll
FEAS T &
? ASSIGN (l
Assigns STACKCRG [CNUMS [J]] . [
to STACKSHP [SNUM], using Figure B. 8

insertion points.

—— G " G G——ts Ju— ot} Wt Gt ittt Gt} CistS Gt meits Getvents Gt Wowy Gwmmt Gwmewms G Gnsmen

W um— Gw—— S—
—

-155-

ASSIGN

START

UPD P

This routine creates and
inserts a stop in the
ship's schedule. Here
nsed far the pickup stop.

Y

UPD_P

Here used for the
delivery stop.

QUPD

Resets quantities to be
delivered in cargo's
record and capacity in
ship

Set MATCH pointers in
ship's schedule, at
cargo stops.

Figure B.9

-156-
UPD P

START

\ ¢

SET

CARGN = # of cargo

COMPNO = # of conplex of
pickup or de-
livery (which-
ever appropriate

BEFORE points to record in ship's schedule
before which we are inserting (stop,=NIL if
we insert stop at very end). This will be
the stop right after the inserted stop.

INTIME=AVAILABILITY
OF SiIP TO CQMPNO

INTIME= time ship gets
to COMPNO.
If LSTOP=NIL, ship's

INTIME = TRAVEL TIME FROM LAST STOP IN
SCHEDULE + TIME LEFT FROM

\

STOP_IN SCHEDULE

schedule was previously
empty, so the
vy availability is used.

» [PELIVERING?THEN DOCK AT MAX (INTIME,EDT)
PICKING UP?THEN DOCK AT MAX (INTIME, EPT

N
e

IF STOP

PREVIOUS TO BEFORE

INTTE =
| AVATLABILITY OF
SHIP TO COMPNO

INTIME = TRAVEL TIME FROM
PREVIOUS STOP + TIME
1EFT FROM THERE

SHIP DOCKED AT
TIME COMPUTED AS
IN *

Figure B.1l0a:
continude in Figure B.1{b)

(A, B:

v

In this casel,
we are
inserting at
beginning of
schedule ¥

> @

-157-

B A

; .

Reset time ship docks at
stop right after inser-
tion to reflect extra
time

Y Y

ADAPT

Internal routine, not
described. Resets times
at stops following the
one after the insertion.

A

Y

Manufacture stop record
for insertion, by setting
DATEIN, P D, PORT, SLACK,
MPL AND CARGO

Y

IF PICK UP, THEN
UPD_CRG

This routine resets the
cargo's pickup list to
include new pickup

Y

Reset complex CQPNO
congestion level during
ship's visit

\

INSERTS

Routine inserts
manufactured stop record
into ship's schedule

Y
END Figure B.10b

-158-

DWN_LOAD

START

Y
Set

CONDIT = F
BANNER = F

CONDIT: Auxiliary boolean
variable

WHILE
:§§ZZ}=£%====#MWCQBH

EPT < T and NOI LOADED

Download next cargo fram]
cargo list: l

SEEN: = SEEN +1

Cargo is added to current time
window only if EPT<T and the
cargo wasn't previously loadedl
(as a seed)

cargo stack

CRGC: = CRXC + 1

Y

lWe stop downloading
as soon as EPT>T or
we reach the limit

P O et ety Gamamey

l
|
l
| “—
]"
|
|
THEN Add cargo to

l f
; T e

L =

IF CRGC = LIMIT

THEN CONDIT: = TRUE

THEN

Have we reached end of overall
cargo list?

CONDIT = TRUE
BANNER: = TRUE

—— G——— Smmm— Wm—— WSSt C— Gm) G—— G— Swme——s Sem— e Se—— Gmmm—

L——-——..—-———.———-——————-—-—-———-——-—— — o—

l
|

=159~

QUPD

START

Pickup is
last or first stop in
ship's schedule?

Capacity avail-
able for pickup
= capacity after
previous stop

Capacity avail-
able for pickup=
original ship

v capacity

N 4
aA

Set Capacity after delivery=
= capacity available for
pickup
QLOAD=MIN (Cap. avlb. for

RASRIRY E8PE" 541 26.5387° o

* We also set capacity after

pickup equal to this quantity

\

MOVE TO NEXT STOP
AT = Time at new stop

Y
ARRIVAL = Time of delivery
AT =Tijr1eofpici<up [———'—-——-—-———-]
v QLOAD = MIN(QLOAD,
| capacity of ship ‘
WHILE after stop) |
AT = ARRIVAL
| |
| Y l
| |
|

As above, again run
through the ship stops
subtracting fram residual
capacity the quantity
QLQAD.

A

Y

SET QLOAD=qgty. picked up and
delivered

Subtract QLOAD from remaining

gty. of cargo to be delivered

Reset ILOADED TO T if neces-
sarvy,

END

se
shi

— — — —=d

ts QLOAD to be the maximm
p can load of the cargo

Figure B.12

Cargo stack

boolean

Cargo stack

boolean array

-160-

before SHIFT

5 8 13125127 | 31134
T F T F T F F
after SHIFT
8 1 25| 31| 34| - |- |-
F F F F F F F

Figure B. 13.1

-161-

SHIFT
START
SE‘g" J indexes the updated cargo stack
? I indexes the current cargo stack;

FOR always J<I

name of Boolean array

|
of cargo ‘
| STACKCRG(I]
Y l
| |
| J = J+1 |
‘ STACKCRG [J] = STACKCRG[I]
ATTMPT = ATTMPT + 1 |
| TRUFLS [J] = FALSE |
‘ |
R J
-
IF
LAST+1 < CRGC
THEN
FOR ~ A
Figure B.13.2 =LAST+l to CRGC o _H_
1 ey |
STACKCRG [J+1-LASY) =
CRGC=CRGC- | |srackcrG[1) l
LAST+] TRUFLS [J+I-LASTI |
\ | |=raLse
TRUFLS[T]=FAISE J |

— o — o ol

~-162~

Figure B.14.1

(b)

‘e

-163-

A UPD-T
I? nserting YE;
¥ \W .
?
COMPNO = Origin camplex of X COMPNO = Destination camplex
cargo of cargo
COUNT = 1 COUNT = COUNT + 1
NOWw =1 NOW = PLACE
FRST = Conplex of pickup
NO Is i.e., are we inserting at end of schedule?
< EFORE=N
.
?
YES
INTIME=Travel time fram
FRST to CQMPNO
TNTIME = Travel Y
time from LSTOP
to COMPNO
e
\ -~
MO / \\ .
< DELIVER -
? Ll
! \/ 1l
INTIME = INTIME + date INTIME = INTIME +
leaving LSTOP PTIME [OOUNT-1]
TIMEN=MAX (INTIME, EPT) . TIMEN=MAX (INTIME,EDT)
Y ¥
TRAVERSE SHIFT

| > Y

re ‘; lB
Figure B.l4.2a (A, B: continued in Figure B.14.2b)

-164-

B

i.e., inserting at beginning T

V7

of schedule?

NO S
-(
DELIVERY
& PIACE=2
YES
v |INTIME=Tire left fram
INTIME=Travel FRST + Travel time
Y time from FRST |
to CAQVIPNO
INTIME=Availability v
time to CQMPNO
4
INTIME=Travel
> time from stop
before BEFORE
to COMPNO N\ Y
} -
NO ¢ YES | INTIME =
INTIME+PTIME
J [NOW-1]
INTDE=INTIME +
time left fram \'/4
stop before
CQIPNO
L . P y .,
Ll . e - §

-

TIMEN= TIMEN=
MAX (INTIME, EPT) MAX (INTIME, EDT)
Y \y
TRAVERSE SHIFT
L R]
Canll N "
/ Y
Additional .
postprocessing

20 Figure B.14.2b

-165-

UPD - CRG

Start

Y

Create new pickup record
and set the ship number
and pointer to corresp.
Stop in ship's list.

Insert pickup record in

cargo's list of pickups

Figure B.15

-166-

APPENDIX C

DESCRIPTION OF ARGUMENTS OF PROGRAMS

The following convention is used:

+
[}

input to program and untouched by program

created by program

input to program and changed by program)

READIN (VAR I-01:INTEGER; VAR COMPLEX:HUBS;
VAR SUPROMP:ALILAGGC; VAR NUMSUP,NUMCRG ,NUMSHP: INTEGER

) VAR TO-MVT:MVTPTR; VAR SHIPS:BOATPT)

-I-01: variable input by user during execution of READIN and later passed
to other programs. This variable is used for outpit control. O I-01
10. The higher I-01 is, the more outpit (of assignment mechanics,
etc.) the user will see.

-COMPLEX: array of complex records

-SUPRIMP: array of supercomplex records

~-NUMSUP, NUMCRG, NUMSHP: numbers of supercomplexes, cargoes and ships

-TO-MVT: array of pointers to cargo records.

-SHIPS: array of pointers to ship records.

-167-

SEEDS (I-01: INTBGER; VAR STACKSHP: ARRSHP;
VAR OOMPLEX: HUBS; VAR SUPROOMP: ALLAGC; VAR SHPNUZ: INTEGER
VAR TO-MVT: MVIPTR; VAR SHIPS:BOATPT)

+ I-01
-STACKSHP: array created by SEEDS which contains the codes of ships to
which cargoes are assigned as seeds.

+ COMPLEX

+

SUPROOMP

- SHPNUZ: number of ships to which cargoes are assigned

* TO-MVT: records of seed cargoes are modified

* SHIPS: a schedule is started for each ship with a seed cargo

-168-

SCHEDULE (I-01:INTEGER; VAR STACKSHP: ARRSHP; VAR CQMPLEX: HUBS;
VAR SUPROOMP: ALLAGGC; VAR SHPNUZ: INTEGER; NUMCRG:INTBGER

VAR TO-MVT: MUTPTR; VAR SHIPS: BOATPT)

+ I-01

+ STACKSHP

+ COMPLEX

+ SUPRCQMP

+ SHPNUZ

+ NIMCRG

* TO-MVT: cargo assignments will be reflected in the cargo data structures

* SHIPS: same as above, for ships.

~

-169-

RLLTIME (I-01:INTEGER; VAR CRGC, SEEN, LIMIT, NUMCRG,T: INTEGER VAR BANNER:

BOOLEAN; VAR STACKCRG: ARRCRG; VAR TRUFLS: BARRl; VAR TO-MVT: MVTPTR)

+ I-01

* CRGC: number of cargoes in cargostack will generally increase

* SEEN: rnumber of cargoes seen by algorithm will generally increase.
+ LIMIT:

+ NUMCRG:

* T : user inpt.

* BANNER: will be set T if we reach end of cargo array

* STACKCRG

* TRUFLS: this array of boolean variables corresponds to the cargo

stack they are set to F initially, look under POSTOPT).

-170-

NETWORK (I-0l: INTEGER; VAR STACKCRG:ARRCRG; VAR STACKSHP: ARRSHP; VAR
CQMPLEX: HUBS; VAR SUPRCOMP: ALLAGGC; VAR CRGC; SHPNUZ: INTEGER;
VAR AL,BT: LINKS; VAR TO-MVT:MVIPTR; VAR SHIPS: BOATPT; VAR FLOWS:

ALLF; VAR TOTAL: INTEGER)

+ I-01
+ STACKCRG: stack of cargoes
+ STACKSHP: stack of ships
+ QOMPLEX
+ SUPROMP
+ CRGC, SHPNUZ: # of cargoes and ships in their stacks
+ AL,BT: auxiliary pointers used by ASSNUTIL to compute utilities
+ TO-MVT: array of all cargoes
+ SHIPS: array of all ships
- FLOWS: variable of type ALLF, which itself is an array (1..N)
of PRSHP records. Each PRSHP record tells us what was
assigned to a given ship. Each record looks like
SNUM: integer, number of ship (in STACKSHP)
CNUMS: array (1..4) of integer, number of cargoes assigned
to ship (also in STACKCRG)
PICKS: array (l1..4) of links of pointers to pickup
point in ship's schedule, one per assigned cargo
DELVS: as with PICKS, for delivery points
COUNT: integer, total number of cargoes assigned to ship

- TOTAL :total number of ships to which cargoes were assigned.

-171-

PERMASSN (I-01: INTEGER; VAR AL, BT: LINKS; VAR STACKCRG: ARROGR; VAR
STACKSHP: ARRSHP; VAR TRUFLS: BARR1; VAR COMPLEX: HUBS; VAR SUPRCMP:
ALLAGGC; VAR TO-MVT: MUTPTR; VAR SHIPS: BOATS VAR FLOWS: ALLF; VAR
TOTAL: INTEGER)

+ I-01
+AL, BT: auxiliary pointers utilized by ASSNUTIL
+STACKCRG
+STACKSHP
*TRUFLS: BARR] (refer to Appendix A. Utilized by
ASSIGN anmd later in RLLTIME.
+ OQMPLEX
+ SUPRCMP
* TO-MVT: cargo records will be modified to show assignments
* SHIPS: ship records will be modified to show assignments
+ FLOWS: raw assignment data from optimization

+ TOTAL: number of ships to whom cargoes have been assigned in optimization

-172-

ASSIGN (I-01l: INTBEGER; VAR TOSHP: LINK5; VAR TCOCRG:

LINKS VAR BPCKUP; BDELV: LINK5; VAR OOMPLEX: HUBS)

+ I-01

* TOSHP: ship's schedule is updated to include stops

* BPCKUP: pointer to record in ship's schedule, before
which cargo pickup will occur.

*BDELV: as BPCKUP, for delivery
+ COMPLEX

-173-

UPD-P (I-01: INTEGER; DELIVERY: BOOLEAN; VAR TOSHP: LINKS;

VAR TOCRG: LINK1l; VAR BEFORE, PMVT: LINKS; VAR COMPLEX: HO

+ I-01

* DELIVERY: = T if stop to be inserted is a delivery

* TOSHP: ship's schedule is modified

* TOCRG: cargo's pickup list modified

+ BEFORE: pointer to stop immediately following insertion
-PMVT: pointer to inserted stop (manufactured by UPD-P)

+ COMPLEX

-174-

DWN-LOAD (I-01: INTEGER; VAR STACKCRG: ARRCRG; VAR CRGC, SEEN: INTEGER;
LIMIT, NCRG, T: INTBGER; VAR TRUFLS: BARRl; VAR BANNER: BOOLEAN; VAR
TO-MVT: MVTPIR)

+ I-01

* STACKCRG: new cargoes are generally down loaded onto stack.

* CRGC: cargo count = number of cargoes in stack.

* SEEN: number of cargoes that have been scanned in overall list.
+ LIMIT: upper bound on number of cargoes in stack (= time window).
+ NCRG: total number of cargoes in owverall list.

+T : upper bourd on EPT's in time window being built.

* TRUFLS: this array utilized in SHIFT, page

* BANNER: becomes TRUE if we reach emd of overall cargo list.

+ TO-MVT

-175-

QUPD (I-01: INTEGER; VAR PCKUP, DELU: LINKS; VAR TOSHP: LINKS; VAR TOCRG:
LINK1) ’

+ I-01
* PCKUP: pointer to pickup record. Record changed to reflect
| quantity picked up.
DELV: pointer to delivery record. Record changed to reflect
quantity delivered.
*TOSHP: pointer to ship. Ship's schedule changed (capacities reduced).

* TOCRG: pointer to cargo.

-176-

SHIFT (I-01: INTEGER; VAR STACKCRG: ARRCRG; VAR TRUFLS:

BARR1; VAR CRGC, LAST: INTEGER, VAR TO-MVT: MVTPIR)

+ I-01

* STACKCRG: ATIMPT will be increased by 1 for some cargoes
* TPUFIS Remaining cargoes will be made into F's

* CRGC: Updated

+ LAST

* TO-MVT

-177-

UPD-T (I-01:INTEGER; DELIVERY: BOOLEAN; VAR COUNT:
INTEGER; VAR AL, BET: LINK3; VAR NUTIME, DTIME,
NUSLK, PSLK, OUTSLK: ARSHP; VAR TOREC, PTOREC: PARRZ;

VAR TO-MVT: MVTPTR; VAR COMPLEX: HUBS)

+I-01

+DELIVERY: BOOLEAN, = T if inserting delivery

* COUNT: length of attempted schedule as measured fram pickup
* AL,BET: auxiliary pointers, used to store pickup and delivery
* NUTIME,...,OUTSIK: arrays to hold time amd slack data

*TOREC, PTOREC: arrays to hold stop pointers for schedule

+ TO-MVT

+ COMPLEX

