Cost-benefit analysis for the
“Intelligent Vessel”: The case of the ATOMOS IV project

Harilaos N. Psaraftis

National Technical University of Athens
School of Naval Architecture and Marine Engineering
Division of Ship Design and Maritime Transport
ATOMOS IV project

• “Advanced Technologies to Optimize Maritime Operational Safety: Intelligent Vessel”
• Contract No. 1999-CM.10540 (DG-TREN, 5th FP)
• Duration: 1999-2003
• 12 partners from 8 EU countries
Previous related projects

• ATOMOS
• ATOMOS II
• DISC (Demonstrators for Integrated Ship Control)
• DISC II/ATOMOS III
ATOMOS IV partners

- FORCE-DMI (DK) -Coordinator
- Lloyds Register of Shipping (UK)
- STN Atlas (D)
- Lyngsoe Marine (DK)
- Logimatic A/S (DK)
- National Technical University of Athens (GR)
- D’ Appolonia SpA (I)
- CETEMAR (E)
- ISSUS (D)
- TNO (NL)
- Swedish Maritime Administration (S)
- Aalborg University (DK)
Main Objectives

• Bring the benefits of advanced computer and control technology to the European fleet.
• Perform a trial retrofit of an advanced control system on a trial vessel.
• Perform a full verification and validation of the retrofit.
• Perform a full evaluation of the retrofit from a safety and cost-benefit viewpoint.
Other aspects

- Compliance to SOLAS V/15 (bridge and navigation equipment design and procedures)
- Human-centered development for ship control centers and interfaces
- Risk-based development applying safety assessment techniques
- Principles-based assessment for programmable systems
- Computer-based training tools
Rationale

ATOMOS-type technologies would

- reduce manning and other costs
- increase EU ship and fleet competitiveness
- reduce risk of accidents and pollution
- increase maritime safety
Possible contexts

- **Newbuilding**: Build a new ship based on ‘ATOMOS platform’
- **Retrofit**: Convert an existing ship by implementing the ‘ATOMOS platform’

Focus of ATOMOS IV project: Retrofit
ATOMOS IV project retrofit

- Implemented on “Frej”, a Swedish ice-breaker
- Vessel to be equipped with all necessary hardware and software
- ATOMOS bridge and integrated ship control
- Extensive tests and sea trials conducted
- Full verification, validation and evaluation
- Final demonstration (the ‘big switch’)
Retrofit Strategy Tool (RTS)

- Helps ship owner assess if retrofit is worth pursuing
- Goes over complete list of retrofit equipment
- Evaluates all costs and benefits from retrofit
- General context: applies to any ship, provided data is available
Cost-benefit issues in RST

• Compare original ship to converted (ATOMOS) ship
• Evaluate all cost and benefit components
• Use appropriate cost-benefit criteria
• Perform sensitivity analysis
• Draw conclusions
Cost benefit contexts in ATOMOS IV

- Specific: just for the ‘Frej’
- Generic: for any ship type
Main Criterion: Net Present Value (NPV)

\[
NPV = \sum_{n=1}^{RFL} \left(\frac{B_{CRn} + B_{MNTn} + B_{INSn} + B_{FUEn} - C_{TRAN} - C_{OTHn}}{(1 + i)^n} \right) - \left(C_{ATT} + C_{NAT} + C_{CAB} + C_{EXT} \right)
\]

Benefits:
- Manning
- Maintenance
- Insurance
- Fuel
- Safety

Initial Costs:
- ATOMOS Platform
- Non-ATOMOS Equipment
- Cabling
- Extra

Recurring Costs (for year “n”):
Training, Maintenance, Upgrading, Service
Cost Benefit Components (RST)

Costs

- ATOMOS Platform
- Non-ATOMOS Equipment
- Cabling
- Extra

Benefits

- Manning
- Safety
- Maintenance
- Insurance
- Fuel
ATOMOS Platform

Navigation Equipment / Bridge Systems

Alarm Monitoring and Control Systems

Software
ATOMOS Platform Cost

<table>
<thead>
<tr>
<th>Category</th>
<th>PURCH. (euros)</th>
<th>INSTAL. (euros)</th>
<th>TRAIN. (euros)</th>
<th>OPER. (euros)</th>
<th>MAINT (euros)</th>
<th>UPGR. (euros)</th>
<th>SERV. (euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVIGATION EQUIPMENT</td>
<td>345,970</td>
<td>14,300</td>
<td>6,700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24,800</td>
</tr>
<tr>
<td>ALARM MONITORING and CONTROL</td>
<td>283,500</td>
<td>168,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFTWARE</td>
<td>21,756</td>
<td>154,743</td>
<td>4,597</td>
<td>2,758</td>
<td></td>
<td></td>
<td>919</td>
</tr>
<tr>
<td>EXTRA</td>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL/ Category</td>
<td>659,226</td>
<td>337,543</td>
<td>11,297</td>
<td>2,758</td>
<td></td>
<td></td>
<td>919</td>
</tr>
<tr>
<td>TOTAL</td>
<td>996,769</td>
<td></td>
<td>11,297</td>
<td></td>
<td></td>
<td></td>
<td>28,477</td>
</tr>
</tbody>
</table>
Non – ATOMOS Equipment

- Navigation
- Communication
- Maneuvering
- Alarm /Control
- Propulsion
- Other

Question – Answer Query
Cabling Cost

ATOMOS BOX

ATOMOS Platform Centre

Vertical length

Longitudinal length

Transverse length
Maximum Transverse and Vertical cable length: \(B + D + (n-2) \times H + H/2 \)

Minimum Transverse and Vertical cable length \(H/2 \)

- \(L_{BR} \): Distance from stern to Platform centre
- \(L_{AT} \): Distance from stern to ATOMOS Box

Longitudinal cable length = \(|L_{AT} - L_{BR}| \)
Extra Costs

\[C_{\text{EXTRA}} = T_R \times (C_{OP} + C_{\text{RET}}) + T_{TR} \times (C_{TR} + C_{OP}) \]

- **\(T_R \):** time duration of ATOMOS retrofit
- **\(C_{\text{RET}} \):** vessel's operational cost per unit time during retrofit
- **\(T_{TR} \):** travel time to the shipyard
- **\(C_{TR} \):** vessel’s operational cost per unit time during voyage to the shipyard
- **\(C_{OP} \):** vessel’s opportunity cost (lost income) per unit time
Manning cost reduction: most important benefit

• Compare conventional crew with ATOMOS vessel crew

• Question: What is the crew composition of an ATOMOS-type vessel?

• No previous results available

• Developed ‘crew synthesis tool’
Manning: Crew Synthesis Tool

- Indicative Vessel’s Crew Synthesis Estimation
- Possible Modification by the Ship Owner
- Reasonable Results (Classification)
- Operational Approach

Input: Database (480 Records: 60 vessels)

Output: Set of Derived Rules and Trees
Automation levels

L0 : Manual
L1 : Remote Monitoring
L2 : UMS
L3 : Automation of Individual Systems
L4 : CCS
L5 : Interconnected System
L6 : IBS – as defined by IEC (1999)
L7 : Watch 1 (ATOMOS vessel)
5 Major Greek Shipping companies - Interviews

Flags: Greek, Panama, Liberia, Malta, Norway

4 Automation Levels Selected: L0, L2, L4, L7

14 Selected Vessels
Crew Synthesis Tool (3)

Data Mining Techniques

Class Approximation with Classification Trees

Y : Dependent Variables

Crew Number per Rank

X₁, X₂... Xₘ : Independent Variables

- Automation / Integration Levels
- Ship Types
- GRT
- BHP
Manning: Illustrative Example

Calculations for Able Bodies

Rule-Leaf 7:

if

AUTOMATION LEVEL is L5 or L6
GRT > 3435
GRT <= 8500

then

AB = 2
Illustrative Example (2)

Sub-Tree: Graphical View

AUTOMATION LEVEL in [L6-L7]

AUTOMATION LEVEL = L6

GRT <= 4450

NO SECOND OFFICERS

GRT > 4450

1 SECOND OFFICER
Cross Validation Test (1)

Test Results:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FLAG</th>
<th>LEVEL</th>
<th>REAL</th>
<th>PRED</th>
<th>DIFF</th>
<th>% DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANKER</td>
<td>UK</td>
<td>UMS</td>
<td>12</td>
<td>11</td>
<td>-1</td>
<td>-8.3</td>
</tr>
<tr>
<td>GC</td>
<td>Cyprus</td>
<td>CONV</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>TANKER</td>
<td>Portugal</td>
<td>CONV</td>
<td>26</td>
<td>27</td>
<td>1</td>
<td>3.8</td>
</tr>
<tr>
<td>TANKER</td>
<td>Italy</td>
<td>CONV</td>
<td>20</td>
<td>23</td>
<td>3</td>
<td>15.0</td>
</tr>
<tr>
<td>RORO</td>
<td>Sweden</td>
<td>CONV</td>
<td>20</td>
<td>21</td>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>BC</td>
<td>Spain</td>
<td>CONV</td>
<td>24</td>
<td>25</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>GC</td>
<td>Netherlands</td>
<td>CCS</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>14.3</td>
</tr>
<tr>
<td>GC</td>
<td>UK</td>
<td>CONV</td>
<td>23</td>
<td>22</td>
<td>-1</td>
<td>-4.3</td>
</tr>
<tr>
<td>CONT</td>
<td>Denmark</td>
<td>UMS</td>
<td>17</td>
<td>19</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>CONT</td>
<td>Denmark</td>
<td>UMS</td>
<td>17</td>
<td>19</td>
<td>2</td>
<td>11.8</td>
</tr>
<tr>
<td>RORO</td>
<td>Cyprus</td>
<td>CCS</td>
<td>12</td>
<td>11</td>
<td>-1</td>
<td>-8.3</td>
</tr>
<tr>
<td>TANKER</td>
<td>France</td>
<td>CONV</td>
<td>21</td>
<td>24</td>
<td>3</td>
<td>14.3</td>
</tr>
<tr>
<td>BC</td>
<td>Italy</td>
<td>CONV</td>
<td>22</td>
<td>25</td>
<td>3</td>
<td>13.7</td>
</tr>
<tr>
<td>TANKER</td>
<td>Spain</td>
<td>UMS</td>
<td>17</td>
<td>19</td>
<td>2</td>
<td>11.8</td>
</tr>
</tbody>
</table>
Cross Validation Test (2)

Case Driven Results (Container, Danish Flag):

<table>
<thead>
<tr>
<th></th>
<th>UMS REAL</th>
<th>UMS PRED</th>
<th>CCS PRED</th>
<th>ATOMOS PRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>17</td>
<td>19</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Captain</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chief Officer (Mate)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2nd Officer</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3rd Deck Officer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chief Engineer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2nd Engineer</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3rd Engineer</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Electrician</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bosun</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Deck or Able Body</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Wiper / Oiler</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cook</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Steward</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Illustrative Example (1)

<table>
<thead>
<tr>
<th>Vessel’s Type</th>
<th>Tanker</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWT</td>
<td>90,000 t</td>
</tr>
<tr>
<td>GRT</td>
<td>39,283 t</td>
</tr>
<tr>
<td>L</td>
<td>205 m</td>
</tr>
<tr>
<td>B (Breadth)</td>
<td>37 m</td>
</tr>
<tr>
<td>D</td>
<td>21.5 m</td>
</tr>
<tr>
<td>BHP</td>
<td>16,681</td>
</tr>
</tbody>
</table>

4-Parts Calculations
Illustrative Example (2)

<table>
<thead>
<tr>
<th>Cost Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOMOS Cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual Operating Cost: € 28,477</td>
</tr>
<tr>
<td></td>
<td>Purchase/Installation: € 996,769</td>
</tr>
<tr>
<td></td>
<td>Training: € 11,297</td>
</tr>
<tr>
<td>Non-ATOMOS Cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Value: € 77,257</td>
</tr>
<tr>
<td></td>
<td>Upper Value: € 226,842</td>
</tr>
<tr>
<td>Cabling Cost</td>
<td>€46,169</td>
</tr>
<tr>
<td>Extra Cost</td>
<td>€1,627,500</td>
</tr>
<tr>
<td>Benefits</td>
<td>Amount</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Manning Benefits</td>
<td>€39,707 per month</td>
</tr>
<tr>
<td>Maintenance Benefits</td>
<td>€15,881 per year</td>
</tr>
<tr>
<td>Insurance benefits</td>
<td>€500 per year</td>
</tr>
<tr>
<td>Safety Benefits</td>
<td>€248,792</td>
</tr>
<tr>
<td>Fuel Benefits</td>
<td>0</td>
</tr>
</tbody>
</table>
Sample results

NPV - Lower Cost Level (Hellenic Flag)

NPV - Upper Cost Level (Hellenic Flag)

Lower Cost Level

Upper Cost Level
Conclusions (summary)

- Real-world retrofit a success
- Project objectives fully realized
- Significant benefits realized
Credits: NTUA ATOMOS team

- D. Lyridis
- N. Ventikos
- K. Dilzas
- P. Zacharioudakis
Coordinates for further info

ATOMOS
- www.atomos.org

NTUA Maritime Transport
- www.martrans.org
- Tel: 210 772 1403
- Fax: 210 772 1408
- hnpsar@deslab.ntua.gr