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The central contribution of this paper is to provide a decision-support 
methodology for a broad class of inter-related problems in liner 
shipping. We aim at the optimization of liner networks by 
transforming the total network design into a sequential multi-stage 
optimization process in terms of Ship Routing & Scheduling, Fleet 
Deployment, and Transshipment. By fixing the various sources of 
non-linearity and by breaking down the total network design into the 
sequential solution of the aforesaid set of subproblems we have 
managed to accomplish our goals via the use of Linear, Dynamic and 
Integer Programming. The stages of the methodology are not 
completely autonomous; conversely, they interact in a dynamic way. 
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1. INTRODUCTION 
 
Liner shipping is one of the two main components of ocean transportation, chartered shipping 
being the other one. Whereas chartered shipping operates in a perfectly competitive 
environment and mainly concerns bulk cargoes (liquid or dry), liner shipping operates 
                                                 
* Corresponding author 



typically in a cartelized environment and usually concerns unitized cargoes (containers and 
ro-ro cargoes). Liners maintain a regular schedule and their operations are inextricably linked 
with intermodal transportation.  
The present paper aims to provide a decision-support optimization-based methodology for the 
Liner Shipping Problem (LSP). The LSP is prohibitively complex computationally to be 
practically formulated and solved in a single-pass way. Consequently, we have applied a 
generic multi-stage optimization-based methodology that breaks it down to more manageable 
subproblems. Thus, the LSP consists of the following components: (a) assigning a sequence 
of ports and times of each route to a vessel (Ship Routing and Scheduling); (b) allocating the 
vessels in the fleet to specific trade routes (Fleet Deployment); and, optionally, (c) 
Transshipment and optimization of regional sub-networks (hub-and-spoke vis-à-vis direct-
calls).  
For a recent review of the routing and scheduling status and perspectives concentrated on ship 
operations one can refer to Christiansen et al. (2004).  Various versions of the Fleet 
Deployment Problem (FDP) are presented in Jaramillo and Perakis (1991), and Powell and 
Perakis (1997). To our best knowledge and according to our taxonomy, no published work 
exists regarding the LSP.  
 

2. METHODOLOGY- MATHEMATICAL FORMULATION 
 
2.1. Methodology assumptions 
Our principal assumptions are the following: 

 Speed of ships: All ships assigned to the same route sail at the same speed to keep 
frequency of service constant. The most profitable speed is a priori established and is 
not a decision variable to our problem.  

 Resistance of Ships: Once speed is assumed fixed, ship resistance is assumed to be 
known and independent of the loading conditions of the vessels.  

 Cargo Movements and Demand Forecasting: The total amount of cargo to be 
dispatched per annum between pairs of ports is independent of the service frequency, 
demand being generated uniformly throughout the year.  

 
2.2. Methodology Outline 
One may refer to the simplified optimization process scheme shown in Figure 1. First, the 
model determines the sequence of ports in each route. Within this module, the methodology 
can choose different alternative models depending on whether or not demand is excessive. 
Second, the frequency of service is decided. Third, we perform re-routing/minor routing. 
Fourth, we apply an Integer Programming Model for the allocation of ships to routes (fleet 
deployment). Finally, we can optionally use the transshipment module for the optimization of 
regional subnetworks. More details of this procedure are as follows. 



  
Figure 1. Simplified multi-stage optimization process scheme 

 
2.3. Fleet routing 
2.3.1. Initial sequencing 
As regards routing determination, our methodology uses one of two different models 
depending on whether our fleet can satisfy all the demand or not. 
 
a) Non-excessive demand:  
For the case of non-excessive demand, our methodology assumes that the number of routes as 
well as the ports of each route are initially fixed. For the purpose of port sequencing 
determination, a dynamic programming computer program (TSPdyn) can be applied based 
upon the formulation of Held & Karp (1962): Starting from an initial and fixed set 
S⊆ {2,3,…,k} and k∈S, we let C(S, k) be the optimal cost, i.e. distance, of starting from node 
1, visiting all the nodes in S, and ending at node k.  
We begin by the boundary conditions   

C ({k},k}=d1k    for all k=2,…,n.                           (1) 
To calculate C(S, k) for |S| >1, we can see that it obeys the following recursive relationship.  

C(S, k)=
}{

min
kSm −∈

[C(S-{k},m)+dmk]                    (2) 

 
b) Excessive demand: 
In most sequencing applications the model does not take into account instances where, for 
some reason, it is not possible to satisfy all the demand. In this case, several alternative 
formulations exist. These are the Profitable Tour Problem (PTP), the Orienteering Problem 
(OP) and the Prize-Collecting Traveling Salesman Problem (PCTSP).  In the PTP the aim is 
to find a circuit that minimizes travel costs minus collected revenue. In the OP the travel cost 
objective is stated as a constraint and the aim is to find a circuit that maximizes collected 
revenue such that travel costs do not exceed a preset value cmax. In the PCTSP, the revenue 
objective is stated as a constraint and the aim is to find a circuit that minimizes travel costs 
and whose collected profit is not smaller than a preset value pmin. Their mathematical 
formulation is as follows: 
A binary xij is associated to every arc (υi,υj) ∈ A, and is equal to 1 if and only if the 
corresponding arc is used in the solution, and a binary variable yi is associated to every vertex 
υi ∈ V, and is equal to 1 if and only if the corresponding vertex is visited. A revenue pi is 
associated with each vertex and a cost cij with each arc. 



The PTP, the OP and the PCTSP share a common set of constraints: 

\{ }j iv V v∈
∑  xij = yi  (υi ∈  V),   (3) 

\{ }i jv V v∈
∑  xij = yj  (υj ∈ V),   (4) 

subtour elimination constraints (see below),             (5) 
y1 = 1,                  (6) 
xij ∈ {0,1}   ((υi,uj) ∈  A),                                  (7) 
yi  ∈  {0,1}   ((υi,uj) ∈  A).                                  (8) 

In the case of the PTP, the formulation is:  

Maximize   - (
( , )i jv v V∈
∑  cij xij + 

iv V∈
∑  pi yi )         (9) 

or alternatively:      Minimize 
( , )i jv v V∈
∑  cij xij – 

iv V∈
∑ pi yi,                          (10) 

subject to (3-8). 
For the OP, the formulation is:  

Maximize 
iv V∈
∑ pi yi,                                           (11) 

subject to (3-8), plus the additional constraint 

( , )i jv v V∈
∑  cij xij ≤ cmax                                           (12) 

For the PCTSP, the formulation is:  

Minimize 
( , )i jv v V∈
∑  cij xij,                                   (13) 

Subject to (3-8) plus the additional constraint 

iv V∈
∑ pi yi ≥  pmin.                                             (14) 

Regarding (5), we choose the following subtour elimination constraints: 
ui – uj + Nxij ≤  N – 1 (for i≠ j; i=2, 3, …, N; j=2, 3, …, N)        (15) 

 
2.3.2. Other considerations in routing 
It is highly possible that considerations such as precedence constraints or marketing factors 
may determine a sequence of ports in each route that is different from the optimal one as 
described by (1-2) above. We can compare the routes that are finally determined, if different 
from the output of TSPdyn, by means of the following formula: 

ERDr = 100%
r

r TSPr

TSP

d d
d
−

× , for each r = 1,…,R           (16) 

ERDr      is a numerical factor showing us how “profligate” in terms of sailing distance is the 
route r. (ERDr ≥  0, ERDr = 0 in the case that the final route is the output of TSPdyn) 
d r

        is the total sailing distance of (actual) route r 

rTSPd       is the total sailing distance of the TSP output route 
If we want to acquire a quantitative sense of the distance “profligacy” in all R routes together, 
this can simply be the average of ERDr: 

ERD = 1
R
×

1
100%

r

R
r TSPr

r TSP

d d
d=

−
×∑                   (17) 



 
2.4. Deciding Frequency of service and re-Routing        
The formulation here is based on the work of Perakis and Jaramillo (1991).  
2.4.1. Amount of cargo moved  
Given a tri-dimensional matrix Q representing the amounts of cargo (TEUs) to be moved 

per year from port i to port j on route r, the amounts of cargo to be loaded or unloaded in 
every port are: 

Qir
= ∑

=

I r

j 1
[ Qijr

+  Q jir
]                                           (18) 

Qir
   is the amount of cargo to be moved (loaded or unloaded) p.a., by all ships 

          at  port i on route r  
 Qijr

 is the amount of cargo to be carried p.a. from port i to port j on route   r 

Qjir
 is the amount of cargo to be carried p.a. from port j to port i on route r 

I r     is the number of ports on route r 
The targeted number of voyages p.a. defines the amount of cargo that has to be loaded and 
unloaded per call (i.e. per voyage) at each port: 

qir
= Qir

[ F r /365]                                               (19) 

 qir
   is the amount of cargo to be unloaded and loaded at the i-th port of route r.  

F r    is the frequency of service.  
 
2.4.2. Cargo levels on board 
Thereinafter, a C++ computer model (titled Clev) computes the cargo levels, frequencies of 
service and minimum required capacities based on the following formulation:  

Lijr = ∑
=

i

f 1
∑
=

f

jg
Q fgr

    (for i= I r , where: I r is the last port in route r)   (20) 

Lijr = ∑
=

I r

jf
∑
=

f

jg
Q fgr

+∑
=

i

f 1 1

f

g=
∑ Q fgr

+∑
=

i

f 1
∑
=

I r

jg
Q fgr

         (for i≠ I r )     (21) 

Lr = max Lijr         (22) 

Lijr   is the amount of cargo on board for a ship sailing from port i to port j on  
          route r, for the case of one voyage per year  
Lr     is the amount of cargo in the most heavily loaded leg 

Q fgr
  is the amount of cargo to be carried per year from port f to port g on route r 

Then, the minimum required capacity of ships that are to operate on route r is: 

RCr
=  Lr /(365/ F r )       (23) 

where F r is the established frequency of service. 

If ships of type k with given capacity V k (in TEUs) are assigned to route r, the minimum 
required number of voyages per year in that route is:  

RV r
 = Lr /V k

         (24) 



and the corresponding value of frequency of service is:  

F r =365/ RV r       (25) 
 
2.4.3. Tools for fleet re-routing and network efficiency evaluation 
We perform re-routing/minor routing through visualizing network efficiency by certain 
graphs. In particular, graphs of (23) show the frequency of service vs. capacity tradeoff in the 
different routes ( RCr

versus frequency of service, F r ). A graphical representation of (20), 
(21) show the loading condition of the ships in the various legs of a specific route, offer an 
insight to the utilization of the ships and provide hints for minor routing or frequency of 
service modifications. At this point, we can identify ship-route incompatibilities due to 
inadequate cargo capacity. The fixing of the frequency of service is required in order to avoid 
non-linearity afterwards.  
Suppose we have pre-allocated certain K ships to certain routes. The initial utilization of each 
ship operating on a certain route can be further examined via the two following formulas:  

( , )k rASU =  
( 1)

1

r

i i r
i

kr

I
L

VI
+

=

×

∑
  (note: for i= I r , Li(i+1)r returns L(Ir)1r)    (26) 

where ASU  is the simplified Average Ship Utilization, and 

( , )k rASU =
( 1) ( 1)

1

( 1)

*

1

r

i i r i i r
i

k

i i r

I
L d

I r
V

i
d

+ +
=

+

×∑
=

∑
                               (27) 

where: ( , )k rASU is the leveled Average Ship Utilization, 

             d
I r

i rii

∑
= +1 )1(

 is the total sailing distance of route r; 

             di(i+1)r           is the distance between two consecutive ports i, i+1 in route r. 
Now the utilization of the fleet can be examined via the following formulas: 

AFU = ( , )
1

1 *
K

k r
k

ASUK
=
∑                             (28) 

AFU = ( , )
1

1 *
K

k r
k

ASUK
=
∑                             (29) 

AFU  = ( , )
1

1

1( )
K

k r k K
k

k
k

AFU V
V=

=

× ×∑
∑

              (30) 

AFU       is the simplified Average Fleet Utilization 
AFU       is the single-stage leveled Average Fleet Utilization 
AFU       is the two-stage leveled Average Fleet Utilization. 
 
Our understanding is that from a vehicle routing perspective it would be an omission not to 
take into account the effects of specific route characteristics on a certain ship’s cost-size 
evaluation. The following formula reflects the rather convoluted relationship among ship size, 

operating route and cost.   ESkr= kra

kV
C         (31) 



ESkr  is the economies of scale factor for a k type ship operating on route r ($/TEU) 

kraC are the (total) annual operating costs of a type k ship in route r  
At this point the decision-maker should reevaluate the routes and the sequence of ports in 
each one. The routing & scheduling of the fleet must be finalized before embarking on the 
next optimization stage.  
 
2.5. Allocation of Ships to Routes 
To allocate ships to routes, the following Pure Integer Programming model is proposed 
(Powell and Perakis, 1997). The objective function in the model minimizes the sum of the 
operating costs and the lay-up costs.  

Minimize ∑
=

K

k 1
∑
=

R

r 1
kraC N kr

+∑
=

K

k 1
Y k ek

         (32) 

where ek      is the daily lay-up cost for a type k ship 
and the decision variables are: 

N kr
  number of type k ships operating on route r 

Y k    number  lay-up days per year of a type k ship 

Subject to:               ∑
=

R

r 1
N kr ≤ N k

max   for each type k ship         (33) 

where: N k

max  maximum number of type k ships available 

∑
=

K

k 1
krat N kr

≥ M r     for all   r             (34) 

krat =T k /tkr
                  (35)                                                                        

tkr
    voyage time of type k ship on route r 

krat     yearly voyages of a type k ship on route r  

T k   shipping season for a type k ship 

M r   number of voyages required per year on route r 

N kr
=0 for specified (k,r) pairs                (36) 

Y k =365 N k

max  -  T k   ∑
=

R

r 1
N kr

                   (37) 

(33) are the ship availability constraints; (34) ensure the minimum required frequencies of 
service are met; (36) are the ship-route incompatibility constraints; finally, (37) are the lay-up 
time (includes dry-docking and repair time) constraints. 
 
2.7. Transshipment 
Once the above stages have been successfully applied, we have an efficient network from the 
routing and scheduling point of view as well as an optimal one from the fleet deployment 
point of view. At this point, we will have to discuss if a transshipment evaluation is 
necessitated. Its ambition will be to serve the special needs or inefficiencies of regional sub-
networks. The planning problem consists of choosing which of a possible set of predefined 
routes to use. We think that a simulation model works very well for this purpose insofar as 
simulation models are similar to gaming models except that all human decision-makers are 



removed from the modeling process. Mathematical formulations of the transshipment module 
will not be presented herein.  
 
2.8. Computational Results 
Given that one of the subproblems of the LSP, the TSP, is NP-hard, the same must be true for 
LSP itself. PTP, OP, and PCTSP are also NP-hard as a TSP instance can be stated as a PTP, 
OP, or PCTSP instance by defining arbitrarily large profits on vertices. With the aforesaid 
dynamic programming formulation, we need memory equal to Ο (n2n) locations and CPU 
time equal to Ο (n22n). But this is not a problem since the number of nodes are not anticipated 
to be that high. For 18-node instances the computational time was 28, 27, and 21 seconds for 
the PTP, OP, and PCTSP (respectively) on an Intel Pentium M processor 1.8 GHz with 
512MB of RAM using a branch-and-bound algorithm. For the Fleet Deployment problem and 
with the same hardware, we had 59 integer variables and the elapsed run time was 1 second 
using a branch-and-bound algorithm. 
In the OP (PCTSP) the optimal solutions have cost (profit) outputs which were very near to 
their upper (lower) bounds, correspondingly. In addition, in a certain scenario for the PTP, we 
increased all the travel costs by 30% each (indicating the continuous rise in fuel oil). Perhaps 
surprisingly, the output had a lower total cost. This occurred since our objective criterion is 
the profit (revenues minus costs) so the model chose to visit much less nodes to achieve 
maximum profit. More details on the results of a FDP realistic application are in Tsilingiris 
(2005) but are not presented here due to space considerations. 
 

3. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 
The liner-shipping problem (LSP) is prohibitively complex computationally to be practically 
formulated as a single-stage process. Consequently, we have presented and applied a generic 
multi-stage optimization-based methodology for it.  The contribution of the present work is 
highlighted by the facts that (to our best knowledge) no former similar published work exists 
and that the number of papers using exact techniques to systematically analyze liner fleets 
lags far behind the swift increase in the capacity of the global liner business. 
We feel that future research in the liner-shipping problem or its strategic “counterpart”, the 
liner-network design problem, can be extremely rewarding and, probably, abreast of future 
ocean-market-driven consulting services. The growth of containerization makes the need for 
sophisticated intermodal-network design very clear. Liner shipping has a crucial function in 
the integration of waterborne transport into a multi-modal door-to-door supply chain. We can 
utilize the theoretical work on TSP, Artificial Intelligence techniques and the rapidly 
decreasing computational costs to create expert robust systems in liner shipping which would 
have available algorithms and select an appropriate for each particular application.  
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