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Abstract

This paper develops a synthesis algorithm on networks for the problem of (a) locating appropriate levels and types

of cleanup capability to respond to oil spills that may occur in a given area, and (b) allocating such capability among

points of high oil spill potential in that area. The heuristic algorithm takes into account frequency of spill occurrence,

variability of spill volumes, di�ering cleanup technologies, equipment e�ciency and operability, ®xed costs of opening

facilities, equipment acquisition, transportation and operating costs, and costs of damage as functions of spill volume

and level of response. The algorithm can also accept stipulations on response times. The results of the heuristic al-

gorithm have been compared with results obtained by a Linear Programming (LP) formulation, and the highest de-

viation observed was around 1%. The advantage of the developed algorithm is apparent in real-life oil spill problems

which are large-scale in nature and which cannot be solved by the LP procedure. Ó 2001 Published by Elsevier Science

Inc. All rights reserved.

1. Introduction

1.1. Background

Oil spill response is interpreted as the emergency action that must be taken to mitigate
damage that may be caused once an oil spill occurs. Governments, industry and society in general
are concerned about massive spills, as well as the smaller spills that occur on a day-to-day basis.
Part of the emergency action to mitigate damage concerns the dispatching of specialized cleanup
equipment to the site of the spill in order to contain, recover or disperse the spilled oil.

This paper concerns the problem of deciding where to locate adequate capability to respond
to oil spills that may occur in a given area. In addition to considerations of location, this problem
generally calls for decisions concerning the proper levels and types of equipment to be stockpiled,
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as well as for policies regarding the allocation of such capability among points or zones of high oil
spill potential. The purpose of the paper is to formulate a model for the oil spill response problem,
outline an approach to the solution of this problem using a synthesis algorithm on networks, and
compare and discuss its results and those of a Linear Programming (LP) approach [6] to the
problem. Oil spill response decisions typically involve planning horizons of considerable duration
(e.g., 5±15 years). Since those decisions have to be made before actual spill incidents in the area of
interest occur, the planner has to base those decisions on, among other things, probabilistic in-
formation on the number and volume of such spills, as well as on assessment of the potential
consequences of any particular spill event under a prescribed response.

Recognizing the connection between oil spill response decisions and operational decisions,
this paper focuses on strategic decisions. However, since such a connection exists, and for the sake
of making this paper self-contained, simplifying assumptions are included regarding spill response
operations, which are represented in a fairly aggregate (but realistic) fashion. It is fair to say that
the topic of oil spills has to date received far less attention in the OR/MS literature than it really
deserves. Nonetheless, several studies are worthy of note: [1] developed a ``goal interval pro-
gramming'' model to aid resource allocation decisions in the US Coast Guard's (USCG) Marine
Environmental Protection program. One of the uses of that model related to pollution response.
[2] developed a ``chance constrained goal programming'' model to aid USCG managers in for-
mulating policies with respect to planning for various types of equipment required to control
major spills. A Transportation Systems Center study [8] addressed the question of how much
equipment the USCG should stockpile in order to satisfy the Presidential directive set forth by
Jimmy Carter in his message to Congress in March of 1977: ``The goal is to respond adequately to
a 100,000-ton spill within 6 h''. However, none of the above or other studies really provided an
integrated framework in which oil spill response decisions at all levels could be systematically
analyzed and tradeo�s explicitly evaluated. Consequently, Psaraftis et al. [7] attempted to provide
the appropriate research framework, and investigated the structure of the problem. They for-
mulated it as a Mixed Integer Programming Problem, illustrated by an application of the model in
the New England region of the US This paper is, in fact, an extension of this work.

1.2. Type of problem and objectives

It is worth mentioning that experience shows that it is not at all unlikely that the response to
a particular spill will come from more than one facility. This is particularly true for very large,
catastrophic spills, where the response typically originates from two or more mutually supportive
(or ``complementary'') locations because each facility is rarely able to handle such spills by itself.
Note that this contrasts with the usual assumption in more ``classical'' facility location problems
(K-median, K-center, etc.), where each demand point is served by only one facility (typically its
``closest'' median or center). In strategic planning for oil spills, therefore, one should pay attention
to the complementary nature of the response.

A natural question in designing oil spill response systems is what is the objective function to
be optimized. This paper assumes that the objective is to minimize the expected total of response
system costs and costs due to damage from spills that may occur in the area, the latter costs being
open to a user-speci®ed weighting. Taking into consideration both system costs and damage costs
as part of the problem objective makes sense intuitively, because any response system requires
funds, and one would like to know not only how much a system would cost but also how much
damage that system would avert. However, it is clear that such an objective function implies not
only risk neutrality on the part of the decision-maker, but, equally importantly, that oil spill
damage costs can be evaluated with some con®dence. Risk neutrality is assumed both for
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analytical convenience and because very little or nothing has been reported to date regarding the
risk preference structure of ``society'' regarding oil spills, and, for reasons similar to those dis-
cussed earlier regarding expected volumes, constraints are introduced that are able to take into
account the decision-maker's aversion to risk, particularly when it comes to very large, very rare,
catastrophic spills. Regarding the evaluation of damage, despite the general consensus that oil
spill cleanup and damage assessment are not, and are never likely to be, precise arts [9], some
progress has been made in this area in recent years, and related e�orts are continuing.

This paper takes advantage of the work done by Psaraftis et al. [7], the purpose of which was
to quantitatively evaluate the damage costs of an oil spill under a variety of scenarios. Such an
approach takes as input spill-speci®c information (location, size, sea state, wind, oil type), area-
speci®c information (inventory of environmental and economic resources) and information on the
response, and produces estimates of damage, broken down into several categories (value of lost
oil, organisms, beaches, marshes, recreation, etc.). This paper assumes that damage can be pre-
dicted as a function of several spill parameters and of the response to a spill, and describes how
such information can be used in a decision-making process. Regarding damage weighting, its role
is twofold: First, it can be used to represent how much the decision-maker is willing to pay in
system costs in order to reduce damage costs by $1 (and, in that respect, a high value of that
weighting increases the relative importance of damage costs vis-a-vis system costs). Second, the
weighting can be used to perform sensitivity analysis on the evaluation of damage, which, as
mentioned before, is never likely to be precise.

Finally, the approach to solving the oil spill problem employed is a synthesis algorithmic
one, using the concept of complementary locations on networks. This approach and some of its
components are described in [5,6] and [3].

2. The problem as network synthesis

The problem described requires the determination of equipment levels (cleanup capability) at
various locations to respond (economically) to spills occurring at designated demand (risk) points.
The spills are of a given magnitude expressed in terms of spill volume. A given allocation of
cleanup capability means that a location i with proper cleanup equipment responds to a spill at a
risk point j if it is economically justi®able to do so. We can de®ne two sets of nodes: NI (location
points) and NJ (demand points); and in addition a dummy node O. Let the unit cost of re-
sponding to a spill at j from location i be designated as cij. The cost of cij will be the sum of the
costs of transporting equipment, cleaning up the spill, and the damage resulting from the delay
incurred by the response having arrived from location i, multiplied, on an anticipated value basis,
by the expected frequency with which spills occur at j. Once the strategic decision on equipment
levels is made, the system is committed to a certain response level q�i; j� at a per unit cost of cij.
Similarly, once the strategic decision is made, the system is committed to the per annum acqui-
sition cost of the equipment at location i. This cost may be expressed as c0OiQ�O; i� where c0Oi is the
per unit acquisition cost and Q�O; i� is the level of equipment acquired for location i. If given the
strategic decision some of the demand at spill site j cannot (economically) be fully satis®ed, then
the system will incur the unsatis®ed demand cost cOj per unit of demand that remains unsatis®ed.
Let this cost be cOjq�O; j�, where cOj is the per unit cost, and q�O; j� is the demand at j that could
not be satis®ed. We are now in a position to describe this as a network synthesis problem for
which a heuristic procedure has been developed.

The total demand at a risk point j is designated pj, and it is clear that this demand is either
satis®ed by the response of q�i; j� from some location i, or unsatis®ed by a response level of
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q�O; j�. The demand pj at j can be described as a requirement between the risk point j and the
dummy node O. This requirement can be satis®ed either through a location i, in which case, the
demand is fully satis®ed, or directly from node O, in which case, the demand is fully unsatis®ed.
Clearly, one can also have a combination whereby the demand is partially satis®ed. Also, if
cOj6 cij for all i 2 NI, the solution will permit the entire demand to go unsatis®ed. Fig. 1 depicts a
situation in which there are two risk points j and j0. A given location i can serve both j and j0.
However, the clean-up capability Q�O; i� at i need not be the sum of q�i; j� � q�i; j0�. This is based
on the assumption that two or more spills can never occur simultaneously. It also implies that the
capability Q�O; i� should be as large as the maximum between q�i; j� and q�i; j0�.

Overall, the problem can be described as choosing ``capabilities'' on the arcs of the network
shown in Fig. 1, which result in a minimum total cost, while supplying the levels pj of demand for
all j 2 NJ. Those capabilities to be located on the arcs �O; j�, j 2 NJ are the unsatis®ed demand.
Also allocation of capabilities to �O; i� means acquiring capability for location i.

The ®xed costs of establishing a facility are not taken into account within the network
synthesis approach, which assumes that a given facility can be established free of cost. The only
expense incurred is the variable costs associated with the level of capability acquired. In order to
tackle the ®xed cost problem, the most obvious solution is to examine all possible combinations of
facilities, and add on to the solutions obtained, the ®xed costs of the facilities included in the
combination. This would be extremely cumbersome, since for a problem with 20 possible loca-
tions S20 di�erent problems need to be solved where Sn is given by

Sn �
Xn

r�1

n!

r!�nÿ r�! � 2n ÿ 1:

That is, even for moderate-sized problems S ÿ Sn is a very large number (S20 � 1,048,575). Note
that it is possible to use for this problem an LP formulation with the methods of Mixed Integer

Fig. 1. Network synthesis, representation with two risk points.
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Programming such as Branch and Bound or Lagrangean Relation. In Section 6 of this paper an
Implicit Enumeration scheme is developed, which may be used either with the LP formulation to
yield an exact solution, or with the heuristic procedure to obtain an approximate solution to the
problem including ®xed costs.

3. A heuristic procedure ignoring ®xed costs

The heuristic procedure developed for solving the strategic problem is based on the network
synthesis representation and relies on the following observations. The capability allocated to a
location i should be no greater than the largest response emanating from location i. The responses
from a location i, which equal the capability of that location may be thought of as marginal
capacities, in the sense that a reduction in these responses would allow the reduction of the ca-
pability located at i. On the other hand, responses which are below the capability at location i may
be thought to have surplus capacity in that they could be increased without increasing the ca-
pability at location i. These observations give rise to the twin concepts of Marginal Capacity
Subgraphs and Surplus Capacity Subgraphs. The heuristic procedure uses these subgraphs to
proceed from a feasible solution to an improved solution and terminates when no further im-
provement is possible. A counter-example is also presented later and indicates that the procedure
need not terminate in an optimal solution.

We may de®ne an additional terminology to be used in presenting the algorithm. The graph
G�N ;A� is made up of two bipartite sets of nodes NI and NJ and a dummy node (see Fig. 2). The
set of nodes NI are referred as the location set, and to the set of nodes NJ as the demand set. A
dummy node `O' is connected to all nodes in NI and in NJ. The arcs of the graph can be char-
acterized under three groups. The capability arcs �O;NI� connecting the dummy node O to the
nodes in NI, have the cost c0Oi for each i 2 NI of acquiring capability. The response arcs (NI, NJ)
connecting nodes in NI to those in NJ, have the cost cij; i 2 NI; j 2 NJ of responding to spills
(demand), which comprise the transport, clean-up, and delay costs. The penalty arcs �O;NJ�

Fig. 2. The graph GfN ;Ag with all the components involved in the network synthesis algorithm.
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connecting the dummy node O to the nodes in NJ have the penalty cost cOi; j 2 NJ for incomplete
response (damages due to unsatis®ed demand). Also, a requirement pj is speci®ed between the
dummy node `O' and the nodes j 2 NJ. The problem is to ®nd the least-cost allocation of ca-
pabilities to the arcs of G � fN ;Ag which satisfy the requirements and minimize the total cost.
Fig. 3 demonstrates an example problem.

The ®rst step of the algorithm ®nds a feasible solution, which is also an upper bound on the
total capability required on the capability arcs to satisfy the requirements pj. This step does not
allow any unsatis®ed demand. The procedure ®nds the least-cost paths from O to j via some i� and
assigns capability q�i�; j� � pj. The value of the Q�O; i� are obtained by ®nding the maximum
response emanating from i.

Step 0: Find the least-cost path from node O to each j 2 NJ through some i 2 NI. Let i��j�
be the node i 2 NI for which c0Oi � cij is minimum, or ®nd

c0Oi� � ci�j � min
i2NI

c0Oi

ÿ � cij

� 8j 2 NJ;

let,

q�i; j� � pj if i � i��j� 8j 2 NJ;

0 otherwise;

�
�1�

Q�O; i� �Max
j2NJ

q�i; j�: �2�

Designate F 0 as the Capacity Subgraph consisting of the arcs �O; i��j��; �i��j�; j� for all j 2 NJ.
The capacity subgraph F 0 represents a feasible solution to the problem, and the sum of the

capacities Q�O; i� is an upper bound on total capability since as much capability as necessary is
located at the most advantageous location for each node in the demand set NJ. The initial ca-
pacity subgraph F 0 � fN ;A0

F g for the problem of Fig. 3 is illustrated in Fig. 4. Then the marginal
capacity subgraph M0 � fN ;A0

Mg is created as well as the surplus capacity subgraph S0 � fN ;A0
sg.

For F 0;M0 and S0 the set of nodes remains the same and only the set of arcs is changed for the
initial solution.

Include in M0 all arcs �O; i� 2 A0
F and all arcs �i; j� � f�i; j� : �i; j� 2 A0

F and q�iij� � Q�ai�g.
Label each �O; i� arc, i 2 A0

F , with

Fig. 3. Example problem showing costs and measurements.
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di � Q�O; i� ÿ Max
�i;j�2�AÿA0

M �
q�i; j� 8i 2 N ; �3�

ci � c0Oi �
X
�i;j�2A0

M

cij 8i 2 N : �4�

Include in S0 all arcs �k; j� 2 A0
M , where, AM is de®ned as the complement set of A0

M ; k 2 N . Label
each arc �i; j� 2 A with its surplus capacity s�k; j� according to

s�k; j� � Q�O; i� ÿ q�k; j�; k 6� 0;
1; k � 0:

�
�5�

Fig. 5 shows S0 and M0 for the example problems. The algorithm does not return to Step 0 at any
future iteration. Step 0 provides an initial solution which is improved upon by Steps 1 and 2, until
termination occurs in Step 3 when no further improvements are obtained.

Step 1 attempts to improve the objective by taking advantage of the surplus capacities
available and thereby reducing the initial capability allocated at various locations i. Step 1 never
considers the possibility of increasing the capability at any location as a means of reducing the
overall objective.

Fig. 4. Initial capacity subgraph F 0 showing arc capacities.

Fig. 5. Surplus and marginal capacity subgraphs.

A. Ceder et al. / Appl. Math. Modelling 25 (2001) 269±285 275



Following the initialization let O � m, where �Mm� � fN ;Am
Mg and Sm fN ;Am

s g.
Find aj (before Step 1) to be associated with k� according to

aj � Min
kj�k;j�2Am

s

ckj � ck�j �6�

and set, gj � k�. Do this for all j 2 NJ. Set QTERM� 0. Find i� that maximizes P in Eq. (7).
That is,

P �Max
i2NI

X
ij�i;j�eAm

M

�cij

8<: ÿ aj� � c0Oi

9=;: �7�

If P < O go to Step 2.
Set QTERM� 1 and create dF m as follows:

r � Min
ij�i;j�2Am

M

fs�n;j�; di�g; �8�

Q�O; i�� � ÿr: �9�
De®ne J � j j �i�; j� 2 Am

M

� 	
dq�i�; j� � ÿr 8j 2 NJ; �10�

dq�nj; j� � �r 8j 2 NJ: �11�
Go to Step 3.

Fig. 6 shows the ®rst iteration of Step 1.
In Step 1 the algorithm reduces the capability at a location i for which P is positive; if there

are more than one location satisfying the criterion (P > 0) it picks the one that gives the most
positive P. This will clearly improve the solution since the summation in Eq. (7) is the net bene®t
in response costs resulting from a unit reduction in capability, and the second term c0Oj, is the
savings in acquisition costs. In the event that Step 1 fails to produce an improved solution the
algorithm proceeds to Step 2.

In Step 2 the algorithm attempts to improve the solution by increasing the capability at some
location. Improvements through the increase in capability are available primarily because of the
possibility of consolidating capabilities and thereby saving acquisition costs. This will allow for
example, allocation of capability at a central location which is not the closest to any one demand
point and yet it is advantageous because it can serve a large number of demand points eco-
nomically. Step 2 ®rst identi®es a set k� of candidate locations whose capability may be reduced
given an increase in capability elsewhere in the system. A location i will exist in the set k� only if it
is better to reduce the capability at that location rather than do ``something else''. The ``something
else'' is explained in Step 2 in a mathematical manner.

Step 2: For each j 2 NJ determine bj � C�i j according to

bj �Max
i2NI

cij: �12�

Determine the set k� as follows:

k� � k :
X

jj�k;j�2Am
M

bj

8<: < ck

9=;; k 2 NI �13�
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Fig. 7 illustrates the setting up of k�. An increment in capability in the system could have replaced
the most expensive response to demand j with a per unit cost of bj, but then it could not have
reduced k 2 k�, where

�k; j� 2 Am
M :

That k 2 k� ensures that it is preferable to reduce k rather than to replace bj. Step 2 next ®nds for
each i 2 NI the set k�i � k� for which an increase at the speci®c location i will allow a reduction in
capability at k 2 k�i .

For each i 2 NI determine k�i as follows:

k�i � k : k 2 k�; k

8<: 6� i; ck

24 ÿ
X

jj�k;j�2Am
M

Min�cij; aj�
35 > 0

9=;: �14�

Fig. 6. First iteration of Step 1 of the algorithm for the example problem.
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Reduce k�i as follows:
De®ne �kj for j 2 NJ as

kÿj � k : �k; j� 2 Am
M ; k 2 k�1

� 	
: �15�

Choose k� 2 kj that maximizes the following expression:

q �Max
k2k �j

ck

8<: ÿ
X

jj�k;j�2Am
M

cij

9=;: �16�

Let

k�i :� k�i ÿ kÿj � k�:

The set k�i formed initially is later reduced to prevent con¯icts. Such con¯icts arise between el-
ements of k�i because they both serve the same demand point j. The set kÿj are the elements of k�i
which are in con¯ict at demand point j. In the event of a con¯ict the algorithm retains the most
advantageous element of kÿj and removes the rest from k�i . The algorithm next identi®es the subset
t�i 2 NJ. The t�i is a set of locations j which exist in the Marginal Capacity Subgraph but for which
no arcs �k�i ; t�i � exist in the subgraph Mm. The algorithm proceeds as follows:

Establish the set t�i 2 NJ where

t�i � t : �k�i ; t� 2 Am
M ; �bt

� ÿ cit� > 0
	
: �17�

Fig. 7. Determination of the set k� in Step 2 of the algorithm.
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Calculate Pi according to

Pi �
X
k2k�i

ck

8<: ÿ
X

jj�k;j�2Am
M

Min�cij; aj�
9=;�X

t2t�i

�bt ÿ cit� ÿ c0Oi: �18�

The set t�i therefore includes those demand points t 2 NJ for which the new location I provides a
net bene®t, as expressed by the condition �bt ÿ cit� > 0. If cit is less expensive than bt (most ex-
pensive current response to t) then establishment of the additional capability at i will bene®t the
objective at t. This bene®t of course is conditional on k�i ; t

ÿ �
not existing in Mm, since if it exists in

Mm, then the additional capability at i would be utilized in the reduction at k�i . This, however, is
the best improvement, owing to the observation (through the determination of k�) that it is pref-
erable to reduce the locations in k�i , rather than to substitute for the most expensive responses bj.

Fig. 8 illustrates the derivation of k�i ; t
�
i and Pi. The algorithm now proceeds to the next step

to determine if any improvement can be obtained.

Fig. 8. Computation of Pi in Step 2 of the algorithm.
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Choose i� 2 NI based on Eq. (19)

P �Max
i2NI

Pi � Pi� : �19�

If P6 0 go to Step 3,
Set QTERM � 1, K � k�i� ; T � t�i� ,

r �Min
dk if k 2 K and cij6 aj; c�k; j� 2 Am

M
s�njj� if k 2 K and cij > aj; c�k; j� 2 Am

M
q�ft; t� if t 2 T :

8<: �20�

Create dF m as follows:

dQ�O; i�� � �r; �21�
dq�O; k� � ÿr; k 2 K; �22�
dq�k; j� � ÿr; k 2 K and �k; j� 2 Am

M ; �23�
dq�fj; j� � ÿr; j 2 T ; �24�
dq�i�; j� � �r; j 2 T �25�
dq�i�; j� � �r; �K; j� 2 Mm and ci�j6 aj; �26�
dq�fj; j� � �r; �K; j� 2 Mm and ci�j > aj: �27�

The dF m created in either Steps 1 or 2 is an incremental change in the solution which improves the
objective function. The subgraph dF m has positive as well as negative capacities corresponding to
increases and decreases in the current solution.

In the ®nal step, which is Step 3, a check is introduced to discover whether the present it-
eration has produced an improved solution, and if not, the algorithm terminates. If an improved
solution has been achieved, the new capacity subgraph F m�1 is created by composing F m � dF m.
The corresponding marginal capacity subgraph Mm�1 and surplus capacity subgraph Sm�1 are set
up and the algorithm proceeds to another iteration.

Step 3: If QTERM � 0 Go to END
Create F m�1 according to

Q�O; i� � Q�O; i� � r�O; i� 8i 2 NI; �28�
q�i; j� � q�i; j� � dq�i; j� 8i 2 NI; j 2 NJ; �29�
q�O; j� � q�O; j� � dq�O; j� 8j 2 NJ: �30�
Create Mm�1 and Sm�1 as creating M0 and S0 in Step 0.
Set m � m� 1
Go to Step 1
END

To show that the algorithm is heuristic one and does not always terminate with an optimal
solution a counter-example is given in Fig. 9. The missing response arcs have a very high cost (one
supposes in®nite) so that they will never appear in an optimal solution. Clearly, the initial feasible
solution to this problem will allocate 100 units of capability at each of locations 1, 4 and 5. The
acquisition cost for this solution is 15,000, while the response cost is 6000. However, a better
solution exists with 100 units of capability allocated at each of locations 2 and 3. The acquisition
cost is now only 10,000 while the response cost increases to 6600.

The heuristic procedure cannot ®nd this improved solution because it cannot examine si-
multaneous increases in capability at two or more locations. In examining the possibility of in-
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creasing the capability at location 2 alone, it ®nds no improvement. Reducing the capability at
location 1 alone is not su�cient since there are no acquisition cost savings. On the other hand,
reducing the capability of locations 1 and 4 involves the in®nite cost arc (2, d). A similar argument
applies to increases at location 3 alone. The only possibility of increasing the capability at lo-
cations 2 and 3 is for them to be increased simultaneously, thereby, avoiding the in®nite cost
response arcs (2, d) and (3, c). If the algorithm is extended to include this simultaneous operation,
the amount of computations will increase very rapidly (say, in an exponential manner). As will be
shown later, such an extension cannot be justi®ed. Nonetheless, the information given in the
example in Fig. 9 is unlikely to exist in reality. Response arc costs are likely to be more or less
close to one another. Hence it is expected that the algorithm will usually terminate at or close to
the optimal solution.

4. The algorithm incorporating ®xed costs

The heuristic solution to the network synthesis problem does not consider the ®xed costs
FXi of establishing the facility at location i. If these costs are zero then the algorithm presented
thus far is su�cient. However, often these costs are not zero, and therefore, there is a need to
devise a solution scheme which permits the use of the algorithm with these costs. In this section,
an implicit enumeration technique is developed to allow for such a solution to be reached e�-
ciently.

De®ne a vector X � �x1; . . . ; xi; . . . ; xh�where,

xi � 1 if location i is a candidate location;
0 otherwise:

�
�31�

The vector X 0i � �x01; . . . ; x0i; . . . ; x0h� is a successor to �x1; . . . ; xi; . . . ; xh�
if x0i6 xi; i � 1; . . . ; h �32�

and

x0i < xi for some i; i � 1; . . . ; h: �33�

Fig. 9. Counter example where optimality is not reached.
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The vector X 0 is an immediate successor to X ifXh

i�1

xi �
Xh

i�1

x0i � 1: �34�

De®ne V �x1; . . . ; xi; . . . ; xh� as the objective function value corresponding to the solution obtained
by the heuristic algorithm with the location set

P � fi : xi � 1g �35�
and de®ne

F �x1; . . . ; xi; . . . ; xh� � V �x1; . . . ; xi; . . . ; xh� � FXi; xi � 1;
0; xi � 0:

�
�36�

Theorem. V(x1; . . . ; xi; . . . ; xh) is a lower bound on F x01; . . . ; x0i; . . . ; x0h
ÿ �

for all successors

X 0 to X :

Proof. Since our problem is a minimization

V �x1; . . . ; xi; . . . ; xh�6 V x01; . . . ; x0i; . . . ; x0h
ÿ �

6 F x01; . . . ; x0i; . . . ; x0h
ÿ �

:

The algorithm ®rst solves the problem including all locations i 2 NI in P . This produces an upper
bound F �1; . . . ; 1� on the solution's objective function value. The algorithm is then applied suc-
cessively to each of the h immediate successors to X � �1; . . . ; 1�. If the objective function value
V x01; . . . ; x0i; . . . ; x0h
ÿ �

of any successor is greater than the current upper bound F �X �, then this
successor and all its successors are eliminated from further consideration. This procedure is
termed fathoming.

For all successors that are not fathomed the F x01; . . . ; x0i; . . . ; x0h
ÿ �

are computed, and the
upper bound is updated if any F x01; . . . ; x0i; . . . ; x0h

ÿ �
is less than the current upper bound. The

procedure is repeated until no further successors are left, at which point the current upper bound
is the optimal solution.

The success of the algorithm naturally depends on the tightness of the bounds generated and
the latter depends on the level of the ®xed costs FXi in relation to the solutions V �x�. If the ®xed
costs are large in comparison to the V �x�, the bounds may not be good. In the example of the oil
spill case, the ®xed costs are relatively low and hence our method produces reasonably tight
bounds.

The formal algorithm for ®xed costs is presented below followed by an example in Fig. 10.

Intialization: The algorithm begins with P1 � 1; 2; . . . ;NI and P � NIÿ P1� 1; then de®ning
a set of locations indexed I where I � 1; 2; . . . ; NI

P

ÿ �
. Determine the corresponding vector X,

and if X is not eliminated go to Step (1). Apply Fathom �X �.
Step (1): Evaluate V �X �. If P is less than NI go to Step (2). Calculate F �X � � V �X � � xi � FXi;
F � � F �X �.
Step (2): If V �X � is less than F � go to Step (3). Apply Fathom (X) and END.
Step (3): F �X � � V �X � � xi � FXi. If F �X � is less than F �; F � � F �X �.

The routine Fathom (X) eliminates all successors of X. This process for NI � 5 appears in Fig. 10.
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5. Incorporation of response time stipulation

In the oil spill case, as can be expected, there are response time stipulations. These response
time stipulations can be incorporated within the heuristic procedure. We can de®ne Xj�r� as the set
of candidate locations ``covering'' the risk point j for a given response time stipulation r. The
response time stipulation requires that a response of level vj be available within r hours. We can
also de®ne an additional risk point j0 corresponding to j for which pj0 � vj, and modify the arc
costs according to

cij0 �
cij; i 2 Xj�r�;
1; otherwise

(
�37�

and

cOj0 � 1: �38�
Based on these de®nitions, the response time stipulation is automatically accounted for in the
solution. The in®nite arc costs for i 62 Xj�r� ensure that response to j will be restricted to arcs
satisfying the response time constraints (if no such arc is available the problem is not feasible). By
setting cOj0 to in®nity we ensure a total response of vj.

Fig. 10. Implicit enumeration algorithm for ®xed costs.
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6. Computational experience and concluding remarks

The heuristic algorithm developed has been subjected to some computational testing, and the
results are presented here. These results refer to various abbreviated forms of the problem gen-
erated by real-life data. The abbreviated forms consist of parts of a single 40� 57 network of the
US New England zone [7].

The network synthesis, as it is mentioned in the introduction, can be solved optimally by the
LP technique as it is formulated, for example, in [7]. On the other hand, the LP procedure cannot
handle large-scale problems like the oil spill problem in the US New England zone. The LP
approach leads to extremely large problems because of the jNIj � jNJj response constraints. A
problem involving 20 possible equipment locations, 5 equipment types and 20 risk points, with
three discrete spill volumes, would entail solving a LP problem having more than 6000 con-
straints. In addition, if there were ®xed costs for establishing facilities at any of the locations, the
solution procedure would involve solving such a problem many times over.

The results of several feasible networks are compared in Table 1, which gives the problem size,
the LP solution, the heuristic solution and their respective CPU times in seconds. The LP codes
used are mentioned in [4], and are codes considered standard for research applications. The results
indicate considerable savings in CPU time in the case of the heuristic solution. As can be seen in
Table 1, after the 12th network, the LP procedure could not handle the large-size problems. The
highest deviation observed was 1.04%. Importantly, the ratio of heuristic CPU time to LP CPU
time appears to decrease with increases in problem size. Also, the deviation appears to be rea-
sonably stable. Clearly there is a room for considerable work on the computational aspects of the
heuristic procedure which may open up opportunities for future interesting results. It is also
worthwhile mentioning that the problem formulated in this research may be found adequate for
other real-life problems, and may enhance the use of the developed algorithm.
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