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Stochastic dynamic programming techniques are used to formulate and solve the problem of 
tracking two independent and stationary targets with one sensor in order to maximize a certain 
measure of performance. At any point in time, the sensor, usually a passive sonar array, can be 
allocated to only one of the two targets. Assuming the fluctuation process in the ocean to be 
governed by a phase-random multipath law, the sensor "holds" the target whenp, the root-mean- 
square pressure at the receiver, is above a user-specified threshold. Using discrete time roodels for 
the ocean acoustic detection process formulated in earlier papers, we solve the problem for a finite 
horizon of observations using several alternative objective and reward/penalty functions. Delays 
of user-specified magnitude in "switching" from one target to the other are also incorporated in 
our algorithms. Examples using both real and simulated data are presented and discussed. 
Finally, future research directions are suggested. 

PACS numbers: 43.60.Gk, 43.30.Vh 

INTRODUCTION: THE PROBLEM 

Consider the following oversimplified situation in pas- 
sive underwater acoustic surveillance: we are faced with the 

problem of tracking two stationary and independent targets 
with one sensor so as to maximize a certain measure of per- 
formance, which will be shortly defined. At any given point 
in time, the sensor, which can be for instance a passive sonar 
array, can be allocated only to one of the two targets for some 
exogeneous reason that is of no concern here. If at that point 
in time the root-mean-square pressurep of the signal due to 
that target is above a specified detection thresholdpo, we say 
that the target is "held" by the sensor. Holding a target is 
generally assumed to be a desirable outcome. However, due 
to the randomness of the fluctuation process, holding will 
not always occur. Assuming that the process is governed by 
a phase-random multipath law, there will be periods of time 
when the signal will be above the threshold and periods when 
it will be below it. At those times when the signal due to one 
target is below the threshold, it may make little or no sense 
keeping the sensor allocated to that target, especially if there 
is a certain chance of being able to hold the other target 
instead. The problem we will be trying to analyze and solve 
in this paper can be roughly phrased as follows: if we have 
some probabilistic information about when each target is 
likely to be above or below its detection threshold, is there an 
"optimal" allocation (or switching) schedule of the sensor 
between the two targets through time? 

The above rather sketchy description classifies the 
problem at hand in the general category of "resource alloca- 
tion" problems, which is of particular importance in target 
tracking and passive underwater acoustic surveillance. 

Resource allocation generally calls for simultaneously 
tracking a number of targets with a limited number of sen- 
sors already deployed in a geographical area of interest. 
Limitations may be due to a number of constraints, such as 
number of available sensors, number of available communi- 
cation channels, information processing capacity, band- 
width, etc. There is an abundance of literature in this area, 
each paper tackling a particular version of the problem, and 

each using different methods that can be grouped into broad 
categories. For instance, Alspach • uses a Gaussian-sum ap- 
proach to the multitarget identification-tracking problem, 
under the somewhat unrealistic assumptions of no missing 
measurements and no false measurements. Bar Shalom, in 
cooperation with various authors, has produced various pa- 
pers in the area, using stochastic dynamic programming for 
resource alloeafio.n under uncertainty 2 and presenting target 
tracking algorithms with uncertain detection origins and 
random "interdetection" times. 3 In the latter paper, subopti- 
mal versions are presented and probabilistic data association 
filters (PDAF) are employed to associate the measurements 
to the corresponding target. Noise is assumed zero mean, 
white, and Gaussian and the problem is in the Kalman filter- 
ing mold (linear state and observation equations}. A 1978 
survey paper by Bar Shalom n presents a comprehensive dis- 
cussion of existing tracking methods in a multitarget envi- 
ronment, dividing them into two broad groups: Bayesian 
(using a posterJori probabilities) and non-Bayesian (using li- 
kelihood functions} and extensively presenting their pros 
and cons. A qualitative paper on problems in multitarget 
sonar tracking s is concerned with the shortcomings of the 
extended Kalman filter (EKF) and probabilistic decision 
making in adaptive tracking for ocean surveillance, also out- 
lining several avenues for future research. A group from Bolt 
Beranek and Newman (BBN) has carried out some research 
on the approximate evaluation of the eovariance matrices 
associated with target state estimates. 6'7 In Friedlander, a ob- 
servations are modeled as a multichannel auto regressive 
moving average (ARMA) process. Hypothesis testing in- 
volving pruning and merging of hypotheses is employed in 
the algorithms of Keverian and Sandell? A similar approach 
is used in Reid.•ø A common shortcoming of all the above 
papers and of others not mentioned here is that no one has 
comparisons of its theoretical models with real datamat 
most simulation results are presented. 

The problem examined in this paper does not attempt to 
get involved with t.he intricate signal processing and tracking 
issues associated with the real world environment. This ver- 

sion of the problem is rather trivial (two targets, one sensor) 
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and unrealistic {stationary targets, sensor can be allocated 
only to one target). Rather, the rationale behind this ap- 
proach is to take advantage of recent results in the modeling 
of the ocean acoustic detection process. •"•2 These results 
have shed some light into the timing of detection events in 
the ocean. Specifically, it has been shown for the case of a 
phase random multipath acoustic process--adequately de- 
scribing long range acoustic signal propagation--that the 
detection process has memory, and that information about 
the frequency of occurrence of detections and the duration of 
the "interarrival" and "holding" intervals can be readily ob- 
tained. This paper investigates how one can take advantage 
of the dynamics of the detebtion process for a more effi- 
cient allocation of resourceg, beginning by the examination 
of the {least complicated) two target-one sensor problem. 
The algorithm developed for this problem is subsequently 
readily extended to take into account possible delays in 
tracking of a target to which the sensor has just been allocat- 
ed. The original version of the problem assumes that if 
switching between targets occurs, the sensor has the capabi- 
lity of instantaneously "tuning" to the new target and hence 
determining whether or not that target is held. However, this 
may not be realistic. The "statistic"p which is tested against 
the detection thresholdpo is usually the output of some inte- 
gration processing of the actual real-time fluctuations re- 
ceived by the sensor. The fact that this integration process 
takes time implies that there may be in general an interval 
after each switching during which we will have no informa- 
tion on whether we hold the target or n9t. 

In the remainder of this paper, Sec. I formulates the 
original version of the problem and solves it using dynamic 
programming. Several alternative objective functions con- 
cerning rewards/penalties for detecting/holding/losing a 
target are considered and discussed. Section II extends the 
above formulation by incorporating delays into the problem. 

Section III presents some examples so as to illustrate the 
algorithms developed. Finally, Sec. IV discusses the results 
of this work and suggests directions for further research. 

I. PROBLEM FORMULATION AND SOLUTION 

Previous work '2 has suggested that for a phase random 
multipath acoustic process, fluctuations from each target 
can be modeled as a discrete-time, two-state Markov p¾o- 
cess. Referring to Fig. 1, states labeled U (for "up") imply 
that fluctuations due to the target in question are above the 
detection threshold, and states labeled D {for "down"} imply 
the opposite. The transition probabilities {at,hi }, are assumed 
to be known for each target i{i = 1,2). Opportunities for a 
state transition occur simultaneously for each target every 
A Tunits of time. The reader is referred to Ref. 12 for details 

on how the transition probabilities can be calculated from 
the detection threshold and other parameters, as well as on 
how A Tcan be calibrated. For the purposes of this paper the 
above parameters will be assumed known and constant 
through time. 

Our sensor can be tuned to either one of the two targets 
{but not to both) at any point in time. If it is tuned to, say, 
target 1, the state of that target is known { U1 or D,}. Of course 
during that time, the state of target 2 is not known with 
certainty. We assume that every A T units of time the sensor 
has the opportunity to switch to the other target, or continue 
being tuned to the original one. 

At any discrete point in time the state of the system can 
be described by the triplet (i,j,p) with i being the target at 
which the sensor is tuned to {i = 1,2),jbeing the state of that 
target {j = I for Uandj = 2 for D }, andp being the probabil- 
ity that at that point in time the state of the other target is U. 

Assuming that the state of the system at some discrete 
point in time, say, nAT, is {i,j,p), then, depending on 
whether we choose to tune to target I or 2, the state of the 
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FIG. I. Discrete-time Markov models 

for targets. 
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TABLE I. Three possible forms of 

(f, fX!,l) (1,2} 2,1) (2,2) (f,f)(l,l) (1,2) (2,1) (2'2) (f,f)(l,l) (1,2} (2,1} (2,2) 
(•,j• 

(1,1) i 0 I 0 (1,1) I 0 I 0 (1,1) i 0 I 0 
(1,2) I 0 ! 0 (1,2) 0 I 0 0 (1,2) 0 I 0 -- ! 
(2,1) I 0 I 0 (2'1) 1 0 I 0 (2,1) 1 0 I 0 
(2,2) I 0 I 0 (2,2) 0 0 0 I (2,2) 0 -- I 0 1 

(a) (b) (c) 

system at the next discrete point in time (n + 1•1 T will be 
(i',f,p',) with f being 1 or 2 accordingly.f cannot be known 
with certainty prior to making that decision. In the follow- 
ing, the probability thatf is I or 2 will be shown to depend on 
i,j,i'd•, and the transition probabilities. Similarly, p' will bc 
shown to depend on the values ofi, j,i',f,p, and the transi- 
tion probabilities. 

(a) (i, 1, p) 

1-al (l,l,p') 

• • (1,2,p') 
I { ,• p• (2,1,i-a i ) 

i'-2 l•_•, (2,2,1_al) 

Given the values of i and j, not all possible outcomes 
(f,f) will be, in general, equally desirable. For instance, giv- 
en (i,d] = (1,1) (target I is held), outcome (i', j'} = (1,1) (target 
1 continues to be held) will be more desirable than outcome 
(i',f) = (2,2} (we switch to target 2 but we cannot hold it}. Or 
given (i,j] = (1,2) (target I is lost), outcome (f,f) = (2,1) (we 
switch to target 2 and we hold it) will be more desirable than 

(p, - p(1-a2)+(l-p)b2) 

(b) 

(c) 

(d) 

(1, 2, p) 

(2, 1, p) 

(1,1,1-a 2) 
i'-y 1-•'•"v•(], 2, •-a 2) 

••. 1-ap/ (2'l'p') 
i'=2•••2(2 2 p') 

(2, 2, p) 

p' (1,1,b2) 

i'll 

]_•b• • (2,1,p') 
(2,2,p') 

(p' - p(1-a2) + (1-p)b2) 

FIG. 2. State transitions in the DP algo- 
rithm. 

(p' = p(1-al) + (1-p)b 1) 

(p' = p(l-al) + (l-p)b 1) 
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outcome (i',f)----(1,2) (we do not switch but still target 1 
remains lost). 

We assume a general reward/penalty function 
c(i,j,i',f) for quantifying how desirable each outcome is. The 
16-element matrix [c] is assumed to be a user input, with its 
elements being positive, negative, or zero. Three possible 
forms of [c] are displayed in Table I: in (a), we are rewarded 
by one unit each time we hold either one of the targets inde- 
pendently of whether we were holding a target at the pre- 
vious stage or not. In (b), we are rewarded by one unit each 
time we record an upcrossing or a downcrossing. The ratio- 
nale here is that we consider any information about when 
those events occur to be very important, without rewarding 
our being in state "U" more than being in "D." Matrix (b) 
also assumes that we are rewarded with one unit when we do 

not hold a target at stage n but hold a target if we switch at the 

next stage, hence without necessarily having a crossing. In 
(c), we have the same structure as in (b), yet we are penalized 
(with a negative unit) if we do not hold a target at stage n + 1 
while we were holding one (not necessarily the same one} at 
stage n. 

The spectrum of all possible state transitions (i,j, p) to 
(i',f, p') along with their associated probabilities is displayed 
in Fig. 2 (chance nodes are circles and decision nodes are 
squares). Figure 2 also displays the relationship ofp' with i,j, 
i',f , andp. 

We are now in a position to develop a recursire relation- 
ship to solve our problem. Let l/,(i,j,p) be the maximum 
expected total net reward from stage n to the end N of the 
process, given at stage n the state of the system is (i,j,p). 
Taking Fig. 2 into account we have 

(a) O<n<N, 0<p•l 

[(1 --a•)[c(1,1,1,1} + V,+ i(1,1,p'}] +a•[c(l,l,l,2) + Va+,(l,2, p')], } l/,(l,l,p) = •p [c(1,1,2,1) + •r,+ •(2,1,1--a,)] +(1 -- œ')[C(1,1,2,2) + V•+,(2,2,1 --a,)] max , { 1) 

V.l,2, p) = max• , (2) 
+ + 0 + +, 

IF + g,+ ,0,1J - 1 + 0 -F)[cI2, LL) + g,+, - V•(2, l,p) = m•( 1 _ a•)[c(2,1,2,1) + V•+, (1,1,p'}] + a•[c{2,1,2,2) + V• +, I•,•,•')1 
1p'[c(2,2,1,11 + g• +, (1,1,b•)] + (1 -p')[•2,2,1,2) + g• +, 11,2,b•)], ] Y.(2,2, p) = m•lb:[c(2,2,2.1} + F• +, {2, l,p')] + {1 -- b:)[c(2,2,2,2} + V• +, (2,2, p'}] l ' 14) 

{b) n = N, 0<p< 1 
•en V. {i,3 p} = O, for i = 1,2, j = 1,2, and 0•< 1. 
If, ins•ad of •imizing the ex•c• reward for the remaining s•ges, we are interest• in obtaining the b•t possible 

"womt •se" •omanee, we should maximize the minimum anticipated reward of the remaining stag• •for each of the two 
availhie d•iaions}. The •umion will •sume the foHo•ng fo•: 

{min[c(l,l,l,1}+ V,,+,{l,l,p'), c{1,1,1,2) + I,',,+,{1,2, p')], } g'.(l,l,p) = maXimin[c(1,1,2,1 ) + F'.+ ,(2,1,1 -- a,), c(1,1:2,2} + F•+, (2,2,1 -- a,)] (5) 
[rain[c{1,2,1,1) + V,,+,(1,l,p'), c{1,2,1,2)+ I•,,+,{1,2, P'}l, ] F•ll,2, p) =rnaXlmin [c(1,2,2,1) + r• +112,1,b,}, c(1,2,2,2) --{- [/n +, 12,2,b,)] } 161 

[min [c(2,1,1,11 + I/,, +, {1,1,1,7 a2)' c12, l,1,2) + V,, +, 11,.2,1 -- a2) ] ,} V.(2,1,p) = maXimin[c{2,1,2,1 ) + I• +• (2, l,p }, c(2,1,2,2) + V,, + ,{2,2, p )] (7) 
[min[ c(2,2,1,1) + V. +, (1, l,b2}, c{2,2,1,2) + g'. +• {1,2,bz) ] '! Y•(2,2, p) = maximin [c{2,2,2,1 ) + I/•+ •(2, l,p'), c(2,2,2,2) + Y.+, (2,2, p'}] J' (8) 

In addition to the above cost structure, which could be 

modified for the case of targets of unequal importance by 
having a different reward for holding target 2 than for target 
1, we might also wish to consider the case where we are 
penalized if the value of the probability p that the other tar- 
get is in state Uis near 0.5, since this is the state of greatest 
uncertainty for that particular target. Our results in this pa- 
per are based on an additional term in the reward/penalty 
function, -- Fp(1 -- p}, where the factor F can be any real 
number. [Some authors prefer [p(1 _p}]•/2 due to its nicer 
analytical properties in the calculation of error probabili- 

I 

ties. } This expression has a minimum ofp = 0.5 and local 
maxima at p = 0 and 1. 

II. DELAY MODELING 

As mentioned in the Introduction, once we decide to 
switch from one target to the other, we may not necessarily 
be able to track it (tune to it, receive its p) for the next KD-1 
stages. One reason for the above delays, that is, integration 
time greater than the time interval between two successive 
observations, was already discussed. Other reasons might 
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include slowness in human reaction, delays in the execution 
of the switching, particularly in the case of manual array 
steering, or, less possible, time lags in the transmission and 
execution ofthe switching decision ifdone automatically. In 
the following, KD will be a user-specified input to the algo- 
rithm, stage to stage. For KD- 1 stages immediately following 
a switching and before we are able to tune to the new target, 
no rewards are incurred since no observations are available. 

In fact, for n = N-KD,...,N and if the elements of the cost 
matrix are non-negative [c(i,j,i',f)>O, i,j,t•,f ---= 1,2] there 
will be no further switchings, since we will incur no benefits 
by switching to the other target and hence we have to contin- 
ue listening to the target currently tracked. For the remain- 
ing stages, and for the case of the maximization of the expect- 
cd reward-to-go, the following algorithm will have to be 
used: 

(a) O<n<N, O<p< 1 

[(1 -- al}[C(1,1,1,1) + 
V,{l,l,p} = maXlg2 [c(1,1,2,1} + V, +ro(2, Lg;)] -t-(1 -- g•)[c(1,1,2,2) + V, + ro(2,2, g•)] ] 

lb, [½{1,2,1,1} + V,(1,2, p) = max• , 
[ga [c(1,2,2,1} + V,,+ r•,(2,1,g;'}] + (1 -- g•)[c(1,2,2,2) + 
[g• [c{2,1,1,1} + g,,+ ro(1,l,g•}] + (1 --g;)[c{2,1,1.2)+ V. + ro(1,2,g•)],] 

V',,(2, l,p) [(1 -- a2)[c(2,1,2,1) + V.+•(1,1,p)] + a2[c(2,1,2,2) + V,,+,(1,2, p)] ----- max 

[g• [c(2,2,1,1)+ F'. + •o(1,l,g•')] + (1 --g•)[e(2,2,1,2) + V. +ro(1,2,g•')],] 
V.(2,2, p) = max[b, [c(2,2,2,1) + g.+l (2,1,p')] + (1 -- b•)[c(2,2,2,2) + V.+ •(2,2, p')] ]' 

(10) 

(11) 

{12) 

(b) n = N, 0<p< 1 
Then Fsr(i d,P)= 0, for i = 1,2, j = 1,2, and 0<p< 1. 
In the above, 

gl = prob(target 1 is up after KD stepsIls down now), 
g•' = prob(target 1 is up after KD stepslis up now), 
g• = prob(target 2 is up after KD stepsIls up with prob 

P2 now), 
g• = prob(target 1 is up after KD steps]is up with prob 

p• now}, 
g• = prob(target 2 is up after KD steps[is down now}, 
g•' = prob(target 2 is up after KD stepsIls up now}. 
Analytical expressions for theg;•g•"s as functions of KD 

can be easily derived from the transition probabilities of our 
two-state Markov models. They are of the general form 

g =P•u + (1 --P•2i, i= 1 or 2, 

where p = prob{target is in state "up"} and the •# are the 
KD-step transition probabilities of the Markov models, for 
example, 

• = [a/{a + b )][1 -- (1 -- a -- b )r•], 

where a = Pl2 and b = P2• in the Markov model of the target 
of interest. 

III. RESULTS 

The algorithms described in the previous two sections 
have been implemented using MIT's Joint Computer Facili- 

! 

ty (VAX/VMS). Discrete probability spaces (101 probabili- 
ties at 0.01 intervals) have been used, with horizons of at least 
N ---- 15 (for the denser probability grid) and up to 45 stages. 
Both real and simulated data were used from actualp(t } re- 
cords from the CASE experiment (described in Ref. 13) and 
the latter by Monte-Carlo methods using the corresponding 
Markov models.' The Markov models were used throughout 
this research, due to their simplicity, quickness in obtaining 
results and most important, superior compatibility with dis- 
crete-time sequential algorithms over our continuous-time 
models. 

We have developed a versatile program that, depending 
on the options chosen by the user, can employ delays of 
specified duration (KD = 1 means no delay}, cost matrix [c] 
and factor F in -- Fp(1 -- p). Real or simulated data can be 
used, taken at user-specified time intervals. These intervals, 
like KD and [c], are constant from stage to stage. However, 
the elements of [c] need not be constants; they could be 
known functions of the stage or even random variables, al- 
beit with known--and finite---expected value. 

The real data presented in this paper are from the CASE 
experiment (record 146 for target 1 and 132 for target 2}. 
Simulated data were obtained by generating random 
numbers between 0 and 1 and comparing them with the 
probability of being "up" at each stage of Markov models 
corresponding to the same CASE records directly used for 
real data. 

TABLE II. Characteristics of targets tracked. 

Target -• Po, (V) oau{V z) v• (Hz) AT• (s) a, b• N' 

I 2.4 3.051 0.2•419 0.72 0.51190 0.32603 15 
2 1.6 1.291 O. 13130 0.72 0.31760 0.18735 15 
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prob(target 1 is in "up" state) 

3 4 5 6 7 8 9 10 11 12 13 

Stage 

14 

FIG. 3. Real data. 

prob(target 2 is in "up" state) 

/ 
/ \ 

2 3 4 5 6 7 8 9 10 11 

Stage 

13 14 

In Table II, Pc/are the detection threshold levels, •i 
the variances of the rms acoustic pressures, v i the rms phase 
rates, A Ti the time steps of the relevant Markov models, a 
and b theirp, 2 andp2/s, respectively (see Fig. 1), and N the 
number of stages for the algorithm. 

In the remaining figures of this report, we have put the 
stage numbers in the abscissas and the probability that our 
targets are in the "up" stage in the ordinates. The convention 
used is to depict target I with a cross "x" and target 2 with a 
circle "0." 

Figures 3(a) and (b} present real data for the cases that 
we are tuned to targets 1 and 2 for the entire duration of the 
observations, respectively. Figures 4(a) and (b) present the 
corresponding simulated data in the same fashion. 

Tables III and IV explain Figs. 5 to 17, which include 
only the cases for which the decision rule produced by the 
tracking algorithm did contain one or more switchings, be- 
cause the no-switching cases are covered by one of the Figs. 3 
and 4. The results, both for real and simulated data, did not 
present any major surprises. The choice of the reward matrix 
[c] and the multiplying factor of - p(! -- p} clearly influence 

the decision-making process. For example, if we set the fac- 
tor equal to zero and we penalize (c = -- 1} losing a target or 
going from state "U" of one target to state "D" of the other 
target, the algorithm decides no switchings. The same pat- 
tern is more pronounced if we have delays (KD > 1) because 
losing a target for one or more stages and thus increasing the 
corresponding penalties can be avoided by deciding no 
switchings. One way to change that no-switching decision is 
to penalize uncertainty, i.e., to have positive factors multi- 
plying --p(l --p) at each stage. Tables III and IV have the 
values of the factors used for Figs. 5-17. Another way to 
encourage switchings is to use the reward matrix (b) that 
does not penalize losing a target but instead rewards both up 
and down crossings, having zero reward for being in the "up" 
state. In the case of delays, however, unless our factor is 
nonzero, adopting reward matrix (b) will not produce a 
switching pattern; the decision will always be to listen to the 
same target instead. 

It is also seen that adoption of the algorithms shown in 
this paper gives better results than listerring to any one of the 

1 2 3 4 $ 6 7 8 9 10 11 12 13 14 

FIG. 4. Simulated data. 
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TABLE IIL Real data. 

o 

o 
.o 

o' 

Figure 5 6 7 8 9 

Factor 1.0 1.0 4.0 2.0 2.0 

Reward (a),(b) (c) 
matrix 

KD I I 3 2 3 

I tProb(targets ere in "up" state) / / ••_'•_ •' '•' •.•'•"•---- • Stage O• : H , : • , - • _, . • • 
I 2 3 4 5 6 7 8 9 10 11 12 13 
1 

FIG. 7. 

TABLE IV. Simulated data. 

Figure 10 11 12 13 14 15 16 17 

Factor 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Reward {a} la) {a} {a) 
mattix 

KD I I 2 3 I 2 3 I 

Target 
2 - 1 - 2 - I 1 Tracked 

i Prob(tn "up" state) 
Stage 

2 3 4 5 6 7 8 9 10 11 12 13 14 Target I 2 3 4 5 6 7 8 9 10 11 12 13 14 Target 
2 I I I 2 2 2 2 1 2 I I I Tracked 1 2 - ! - 2 2 2 ! 1 1 1 Tracked 

FIG.5, 
FIG. 8. 

O: • J # -- 
1 2 3 t, 5 6 7 8 9 10 11 12 13 14 Target 

Tracked 
2 I 1 1 2 2 2 2 I 1 1 1 1 

FIG. 6. 

Stage 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Target 
Tracked 

1 - 2 2 2 2 2 2 1 I 1 

FIG. 9. 



z 

Prob(targets are in "up" state) 

/ / 

2 3 4 5 6 7 8 9 10 11 12 13 14 
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targets alone for the entire duration of the observations, in 
that the expected "reward-to-go" at each stage is always 
greater than or equal to the expected "reward-to-go" of the 
"nonswitching" policy for all cases examined. For example, 
for reward matrix {a}, KD = 1 and factor = 0, the expected 
reward-to-go using our algorithms is 6.8910 at the beginning 
{stage one}, whereas if we always listen to the same target our 
expected reward-to-go will be 5.446 and 5.194 for targets 1 
and 2, respectively. Likewise, for the case of reward matrix 
{b} and factor = 0, KD = 1 we have an expected reward-to- 
go of 5.746 using the algorithm versus 5.58 and 3.304 if we 
listen to targets 1 and 2 {respectively} for the entire duration 
of the observations. 

IV. CONCLUSIONS AND SUGGESTIONS FOR FURTHER 
RESEARCH 

We have presented the formulation and solution of a 
simple resource allocation problem. The decision rules pro- 
duced by the algorithms are heavily dependent on our choice 
of the reward and penalty terms as well as by the existence 
(or not) of delays in switching. 

There are three basic limitations in the algorithms pre- 
sented in this paper. First, only the computationally simplest 
case of one sensor and two targets is examined--usually we 
have several sensors and even more targets. Second, we as- 
sume stationarity of the detection process: the targets are or 
are not there for the whole duration of the observations. 

Third, noise is not treated here; in the real ocean, we can 
never be sure that P>Po implies that we indeed hold a target 
or that we just have excessive ambient noise. Hence, several 
directions of future research seem to be open at this point. 

A. Extension to more sensors and/or targets 

The problem of one sensor and several targets is a 
straightforward extension of the algorithms developed in 
this paper. The stage space will increase exponentially with 
the number of targets, and the available decisions will be 
equal in number to the number of targets. Consequently, for 
a large number of targets we should expect computational 
difficulties, which can be partially remedied by using heuris- 
tics to either approximate the decision regions or the objec- 
tive function at each stage, or by grouping the targets appro- 
priately and solve many smaller problems, getting in all cases 
suboptimal results. Before we proceed with such heuristics, 
however, it might be beneficial to obtain some exact results 
and see how they will be changed by our approximations. 

The problem of two sensors and three targets can be 
considerably more complicated. In the simplest case, the 
sensors arc all located in the sarnc sonar array (i.e., they are 
individual sonar beams that can be steered in the direction of 

any target we choose to listen to}; hence when two such sen- 
sors are tuned to the same target they receive the same signal. 
We have formulated dynamic programming algorithms for 
this case, with or without delays. The state space is three 
times as large as the one of this paper. The problem of 
NS = 2 sensors and NT = NS + 1 targets can be handled 
similarly. We have NT decisions (i.e., which target to leave 
out at each stage) and an N X NPR X 2NS state space. Clear- 
ly, for many sensors we will have serious computational 

problems, and we will probably have to resort to heuristics. 
The incorporation of delays in the above extensions is ex- 
pected to be somewhat more complicated than in the prob- 
lems formulated and solved in this paper. The case of sensors 
located in different parts of the ocean, i.e., each receiving a 
different signal from the same target, requires a doubling of 
the state space over the identical sens9rs case, but otherwise 
is not a conceptually more difficult problem. 

The problem of NS>2 sensors and NT>NS + 1 targets 
is the most general one. The number of available decisions 
increases significantly. Severe implementation problems are 
expected. 

B. Extensions to nonstationary processes 

Our models for the detection process hold, in the strict 
sense, for a stationary phase random multii•ath process. 
Clearly, if our targets appear and disappear relatively fre- 
quently, this stationarity is riot preserved arid our models 
cannot be used. However, under the assumption of infre- 
quent changes (quasi-stationarity), we can accept that the 
process is characterized by one set of Markov models during 
the (long} interval before a change in the state of nature, and 
by another after the change (piecewise stationary processes). 
Such approaches have been already used in Ref. 14 in se- 
quential hypothesis tests (failure detection}. Their imple- 
mentation within our target tracking framework is far from 
obvious at this point. 

C. The treatment of noise 

A straightforward way to take into account the "cor- 
ruption" of our observations by noise would be to reformu- 
late the modeling of our targets as partially observable Mar- 
kov processes. This will significantly complicate both the 
formulation and the implementation of the problem, par- 
ticularly for more than two targets. However, our present 
formulation might be interpreted in a way that satisfies this 
requirement, as follows: the detection threshold can be 
thought of as assigning our observations not to either the 
"up" or the "down" states presented in this and previous 
papers, but to either a "certain" {P>Po} or an "uncertain" 
( P <Po} state. This can be extended further by developilag a 
three-state Markov model involving two thresholds and that 
will assign the observations in one of the following states: (aj 
target is there, p>p6(b} target is not there, p <Po, and 
uncertain state, Po<P <P/•- Developing this model is not ex- 
pected to present serious problems. 

Note added in proof.' While this paper was with the prin- 
ter, the authors have developed heuristic procedures for ap- 
proximately solving the general multisensor, multitarget ver- 
sion of this problem. Details can be found in Ref. 17. 
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