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This article presents an informal discussion of the issue of asymptotic optimality of 
heuristics from the viewpoint of the operations research practitioner. It is suggested 
that certain heuristics belonging to the above class are likely to  perform questionably 
in practice, with regard both t o  relative error and t o  computational tractability. Possi- 
ble explanations of this phenomenon are offered and suggestions for further research 
toward a better understanding of this problem are presented. 

1. INTRODUCTION 

The probabilistic analysis of heuristic algorithms is an area that has received growing 
attention over the past several years. Research in this area has been motivated by the 
observation that a heuristic’s worst-case performance may have little or nothing t o  do 
with how the heuristic behaves “in practice,” or “on the average.” To state one ex- 
ample, the worst-case performance of the k-interchange heuristic of Lin and Kernighan 
[5] for the Traveling Salesman Problem (TSP) can be arbitrarily poor (as demon- 
strated by Papadimitriou and Steiglitz in [8]). However, this heuristic is recognized to  
be one of the best devised for the TSP to date, in the sense that it produces very good, 
near-optimal, or optimal TSP tours “for typical TSP instances most of the time.” 
Many similar examples can be found in other problems. Given the above, many re- 
searchers have become interested in the performance of heuristics from an “average 
case” point of view, and the probabilistic analysis of algorithms has been adopted as 
the main vehicle toward that goal. 

It is fair to  say that the main thrust of research efforts in this area over the years 
ended up being the design of heuristics which are “asymptotically optimal,” that is, 
for which it can be proven that the value of the objective produced by the heuristic 
converges “with probability one” (or, “almost surely”-as.) to the optimal value of 
the problem when the size of the problem becomes arbitrarily large. Heuristics belong- 
ing to  this class include the partitioning heuristic for the TSP suggested by Karp [4],  
a similar family of heuristics for the single and multivehicle Dial-A-Ride Problem sug- 
gested by Stein [ l o ] ,  the “honeycomb” heuristic for the Euclidean K-median problem 
developed by Papadimitriou [7],  and others. The success of those and other efforts in 
demonstrating asymptotic optimality have naturally stimulated development of con- 
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ceptually similar algorithms for other difficult combinatorial optimization problems, 
and the literature in this area is rapidly growing. 

The scope of this paper is to reexamine informally the issue of asymptotic optimal- 
ity from the viewpoint of the operations research practitioner. From that specific 
viewpoint, it may be of little or no importance if a heuristic for the TSP (say) pro- 
duces an arbitrarily small error for sizes of problems of the order of (say) lo7 cities 
(much in the same sense that it may be irrelevant if the heuristic’s worst-case error is 
arbitrarily high). What is likely of more interest to the operations research practitioner 
is whether a particular heuristic performs well at more typical problem sizes and 
whether its computational effort at  those problem sizes is tractable. In that spirit, a 
practitioner would likely be very interested to know whether an asymptotically opti- 
mal heuristic is really viable (in terms of both relative error and computational effort) 
for realistic problem sizes, or whether its asymptotically optimal behavior is a feature 
of only theoretical (or “academic”) importance. 

This author feels that this important issue has hitherto received far less attention in 
the literature than it really deserves. It is fair to say that little theoretical or empirical 
work has been performed to establish the rate of convergence of such heuristics to 
their asymptotic limits i f  the problem size is finite. Some researchers (e.g., Karp [4] 
and Papadimitriou [7] ) have presented analyses concerning the bounds on the relative 
error of their heuristics, but those analyses stop short of giving an idea of how tight 
those bounds can be. Karp [4] conjectures that the error bounds suggested by his 
analysis are too pessimistic, but the evidence that supports that statement is not really 
conclusive. Some other researchers may content themselves with a proof of asymp- 
totic optimality without performing an analysis of the magnitude of the algorithm’s 
relative error or its rate of convergence. In such cases, the conclusions regarding the 
practical merit of the algorithm can be misleading. 

This article attempts to  shed more light into those issues as follows: Section 2 fo- 
cuses on an algorithm that has been recently developed for the routing of a fleet of 
vehicles to serve points on  the Euclidean plane [ 6 ] .  Despite the fact that the algo- 
rithm is indeed asymptotically optimal, Section 2 presents analytical evidence suggest- 
ing that the algorithm is likely to perform questionably in practice (in terms of both 
relative error and computational effort). Section 3 generalizes the arguments of Sec- 
tion 2 to other problems, presents some insights explaining the disparity between 
“asymptotic” and “finite” performance of such algorithms and finally suggests re- 
search directions toward a better understanding of this problem. 

2. THE ALGORITHM OF MARCHETTI SPACCAMELA, 
RINNOOY KAN, AND STOUGIE 

2.1. A Brief Description 

The writing of this paper has been inspired to a great extent by a recent article by 
Marchetti Spaccamela, Kinnooy Kan, and Stougie [ 6 ] .  The article defines a vehicle 
routing problem for which decisions can be broken down into two hierarchical levels: 
A t  the aggregate level, a decision has to be made about the number k of vehicles that 
have to be acquired at a cost c each, to serve n customers from a single depot. Those 
customers are assumed independently and uniformly distributed within a circle of 
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radius r with the depot at its center. The decision at the aggregate level is t o  be made 
before the actual location of those customers becomes known, and should be such, 
that the expected value of vehicle acquisition plus routing costs is minimized. A t  the 
detailed level, the vehicles whose number was decided upon at the aggregate level have 
t o  be routed t o  service n customers so as to  minimize the maximum route length as- 
signed to  a vehicle. Of course, decisions at the lower level are made after the exact 
locations of the n customers are known. 

The authors of [ 6 ]  develop a two-stage heuristic algorithm for solving the above 
problem. A t  the awegate level, the objective function is approximated by a determin- 
istic equivalent ZLB(k), which is almost surely a lower bound on that objective as 
follows: 

where fl is the “asymptotic constant” for the TSP (see Beardwood et  al. [l]), defined 
by : 

with IT0\ being the length of the optimal Traveling Salesman tour through the n 
points. 
k is subsequently chosen so as to  minimize ZLB(k). It is shown that the optimal 

value of k is 

with 

Decisions at the detailed level are made heuristically through a partitioning procedure 
similar in spirit with (but simpler than) Karp’s heuristic for the TSP [4 ] .  The proce- 
dure essentially partitions the circle into 2d subregions, containing n o  more than t cus- 
tomers each, with t being a parameter yet to  be determined and d defined by 

An exact Traveling Salesman algorithm is subsequently used to create minimum 
length tours for each subregion. The tours are then connected in a certain way to 
form a set of kLB routes. Details on the partitioning procedure and on how the tours 
in each subregion are connected can be found in [ 6 ]  and need not be repeated here. 
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The intriguing features of the procedure are twofold: 

1. Its running time is polynomial in n provided that t is chosen to depend appro- 
priately on n. In fact, for some constant 8 > 2 the above running time is 

The above function is obviously polynomial in n for any fixed choice of r. It is also 
polynomial in n if t is taken equal to log n (as the authors of [ 6 ]  have assumed). In 
this case, the running time becomes O(n2/log n). 

2. The heuristic is asymptotically optimal at both levels, in the sense that “both the 
error that can be ascribed to a lack of perfect information at the aggregate level and 
the error that results from the use of a suboptimal method at the detailed level tend to 
0 as n increases.” According to the authors, “this is the strongest possible asymptotic 
optimality result that can be found for such heuristics.” Mathematically, the authors 
show that if t = log n,  then (Theorem 2 of [6]) 

where Z H  is a random variable representing the total actual value of the objective, 
given k = kLB, and, given the partitioning and connecting strategy used at the detailed 
level (this is almost surely an upper bound on the optimal value of the problem) and 
- Z D  is another random variable, representing the minimum cost achievable with perfect 
forecast into customer locations (this is almost surely a lower bound on the optimal 
value of the problem). 

The authors subsequently go on to show that the heuristic is asymptotically clairvoy- 
ant (relation (23) of [ 6 ] )  and asymptoticazly optimal in expectation (relation (24) of 
[ 6 ] ) .  They also show that the solution at the aggregate level itself almost surely con- 
verges to the optimal one (Theorem 4 of [ 6 ] ) ,  and then extend their results to the case 
each vehicle has a different cost and speed and to some other special cases. 

2.2. Further Analysis 

The above results are definitely appealing for they imply not only that a compli- 
cated, stochastic, two-level combinatorial problem can lend itself to tractable analysis, 
but more important, that an asymptotically optimal procedure can be devised for it. 
The rest of this section pursues the approach of [ 6 ]  one step further, in order to inves- 
tigate the rate of convergence of the left-hand side of relation (7) above to 1 .O as n in- 
creases. Indeed, in their concluding remarks, the authors of [ 6 ]  give some hints that 
due to a term proportional to I/- that appears in several right-hand sides, such a 
convergence is likely to be rather slow. Here we provide a quantitative investigation of 
this issue, that is, give an idea of what values n (as well at t )  should take so that the 
left-hand side of (7) is acceptably close to 1 .O almost surely. 

In order to obtain a better feeling on how the results of this investigation depend on 
the assumed functional relationship between t and n,  we first present the general case 
where no  relationship between n and t is assumed, and then examine what happens if 
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t = log n, as assumed in [6]. Our analysis is made assuming that the reader is familiar 
with the notation and arguments used in [6] to arrive at relation (7) above: 

From (l), (3), and (4) we can easily see that 

We also have (relation (21)of [6]) 

- ZD 2 Z L B ( k L B ) .  (as.) (9) 

As far as Z H  is concerned, we have t o  calculate the actual value of what appears only 
as an order of magnitude in (14), (17), and (18) of [6]. To do this, we have to  calcu- 
late the upper bound on Zj=l  per (Yj) which is implied by the authors’ approach 
(Lemma 2 of [6] ). 

2d 

In fact, according to (15) and (16) of [6], we can state that 

Given (9, (10) can be rewritten as 

Given (13) and (18) of [6] and (1 1) above, we have 

(n - 1)/(t - 1) (2r t 4nr) - 2nr . (as.) (12) 
k L B  

For convenience purposes, and for anything but very small values of t and n we can 
safely assume that t - 1 = t and n - 1 = n. Then (2), (3), (8), (9), and (12) finally 
combine into 

It is interesting to  note that the right-hand side is independent of c and r. Assuming 
that 0 ~ 0 . 7 6 5  (the speculated, approximate value of 0) the above can be finally 
written as 

which, in fact, reduces to (7) for n -+ m and t = log n (since zH >zD as.). 



592 PSARAFTIS 

It can be seen that the rate at which the right-hand side of (14) converges to 1 .O de- 
pends on the rate at which the relative error term (8.061/* - l . l58/f i )  goes to 
zero as n +-. Since the term 8.061/* is present, the rate of convergence depends 
critically on the assumed functional relationship between t and n. It runs out that for 
t = log n (as was assumed in [6]) the convergence is extremely slow, as indicated by 
the following table: 

n t = l o g n  (8.061/*- 1.158/fi) 

103 10 2.55 - 0.04 = 2.51 
1 o6 20 1.80- 1.158X = 1.80 
10l2 40 1.27 - 1.158 X = 1.27 
1024 80 0.90- 1.158X 10-12=0.90 

(A minor observation is that in all cases the error contribution of the term - l ,158/fi ,  
although favorable, is several orders of magnitude smaller than the error contribution 
of the term 8.061/*, which is of course unfavorable.) 

If now one is to keep the error term acceptably small (for instance, so as to guaran- 
tee almost sure& a relative error of no more than a modest 10%) then t, and, a fortiori, 
n must take on intolerablv large values (in this case t 2: 6.500 and n 2 respec- 
tively). Of course, it is impossible that distribution problems of such size would ever 
occur in practice (it suffices to realize that the total number of atoms in the universe is 
of the order of loao). Furthermore, such high values of t would virtually prohibit the 
use of an exact Traveling Salesman algorithm for the routing in each subregion; in fact, 
one cannot use such exact algorithms if t is more than about 100 (at best). This in- 
tractability is reflected in the procedure’s running time, which, albeit O(nz/log n), is 
still an exponential function of t (according to (6)). 

Thus, this analysis ‘‘quantitatively’’ confirms the “qualitative” pessimism of the 
authors of [6] regarding the convergence of their procedure. The practical implica- 
tion of the analysis is that the error that can be ascribed to this heuristic cannot be 
guaranteed-not even in a “probabilistic” (or “almost sure”) sense-to go to zero as n 
increases, without increasing the overall computational effort of the procedure to a 
prohibitive level. Conversely, in order to maintain computational tractability in the 
heuristic, and for the range of problem sizes that are likely to occur in the real world, 
one has to accept bounds on its relative error that are too loose to serve as practical 
performance guarantees, however liberally the word “guarantee” is interpreted. 

Of course, as the authors of [6] mention, one can try to use a heuristic algorithm 
instead of an exact one for the TSP problems that are defined in each subregion. Such 
substitution would alleviate (but not eliminate) the computational burden of the 
procedure. However, this would also nullify any claims on asymptotic optimality. 
Golden et al. [3] ,  investigated such “hybrid” procedures in conjunction with Karp’s 
TSP approach [4] and reported “reasonable” results but for very large problem sizes 
(an evidence of the slow rate of convergence of that procedure). Whether such an ob- 
servation is also applicable to this algorithm is an open question at this point. 

One may also argue that the bounds obtained by the above analysis are too loose and 
that tighter bounds could be obtained by a more careful investigation. However true 
this might be, it would be impossible to bring the term ZjCl per (Y,) to a value lower 2d 
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than 2d/2(2r) t 2nr (Lemma 2 of [6]). And even if the second contribution ( 2 d / 2  - 
1) 4nr is completely ignored in (10) (a very optimistic assumption), its only effect 
would be to  substitute (14) with 

ZH/zD < 1 t 1.106/* t 1.158/+. (as.) (15) 

Of course, (15) is better than (14), but still suffers from the same problems (a 10% er- 
ror requires f z 120, or n ‘5 

Finally, one might argue that better results could be obtained if the functional rela- 
tionship between t and n were different. For instance, if t grew faster than log n, a 
faster convergence could be achieved. However, a faster growth is a twoedged sword, 
for it automatically increases the computational effort of  the procedure (according to 
(6)). In summary, the price one has t o  pay (in terms of computational effort) in order 
to limit the algorithm’s error to  an acceptable level seems excessively high. 

still bad). 

3. DISCUSSION 

In their concluding remarks the authors of [6] suggest that the probabilistic analysis 
of algorithms serves not so much to cover the user against every possible situation, but 
rather to  explain why certain simple heuristics almost always seem to produce much 
better results than their worst-case analysis would seem to suggest. We agree with this 
basic premise. At the same time, we feel that one should be cautious in interpreting an 
algorithm’s asymptotic optimality as conclusive evidence that the performance of this 
algorithm in practice will be good, very good or near-optimal. In fact, we feel that this 
paper has demonstrated that such conclusions cannot be drawn for the algorithm of 
[6]. Under the current state of knowledge in the probabilistic analysis of algorithms, 
we feel that extensive computational experience with the procedure is about the only 
way to  shed more light on how good it is in practice. Until such experience is ob- 
tained, or until the state of the art in analytical methods in this area is improved, this 
issue is likely t o  remain open. 

So far, this investigation has been specific to  the approach of [6]. To what extent 
can one generalize the above arguments to  other similar approaches that have been pre- 
sented in the literature t o  date? And what can be offered as an explanation for such 
potential disparities between, on the one hand, asymptotic optimality, and, on the 
other, questionable practical performance of such algorithms? The rest of this section 
attempts to  answer those questions. 

Obviously, one cannot simply use the above example t o  draw conclusions about 
other heuristics, because it may be that such behavior is specific only to the heuristic 
of [6] and absent elsewhere. However, there is some evidence that this behavior (or 
symptoms of it) is present in some other similar heuristic procedures: In addition to 
the partial and empirical evidence that Karp’s partitioning TSP heuristic [4] converges 
slowly (as reported in [3]), this author provided analyfical evidence that the same is 
true of Stein’s asymptotically optimal heuristic for the single vehicle Euclidean Dial-A- 
Ride Problem (DARP) [ lo] .  The full analysis is presented in section 3.2  of  [9], but it 
might be useful to  summarize its main rationale below: 

The single vehicle Euclidean DARP calls for the routing of a vehicle to service n cus- 
tomers, each of whom wishes to travel from a distinct origin to a distinct destination. 
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Assume all origins and destinations are independently and uniformly distributed in a 
Euclidean service region. Stein’s asymptotically optimal heuristic divides the service 
region into m regions of equal size. On the “first pass” through the regions the vehicle 
visits in region i (i = 1, 2 ,  . . . , m )  all origins in that region as well as all destinations 
whose origins are in regions 1 ,2 ,  . . . , i - 1, with the routing in each region done opti- 
mally (i.e., using an exact TSP algorithm). On the “second pass” through the regions 
the vehicle visits the remaining destinations in each region (again optimally). Subtours 
are then connected arbitrarily. 

Stein’s heuristic is asymptotically optimal if n + 00, m + 00, and n/m + ~1 (the latter 
so that one can use relation (2) for the lengths of the TSP tours in each region). If an 
exact, Dynamic Programming algorithm is used for the TSP’s of each region, the over- 
all complexity of the algorithm becomes O(n2 2nl”/m), which can be polynomial with 
respect to n for. certain rates of growth of m with respect to n. One such type of 
growth is m = n/(h log n) with h > 0 bding a constant. If this is the case, the computa- 
tional complexity of the algorithm becomes O(nh log n), polynomial with respect 
to n. From a running time point of view, one would like to choose h to be small. If 
h = 1 however, and if n/m 2 20 customers per region is the minimum that is adequate 
for using the approximation implied by (2)  (see also Eilon et al. [ 2 ,  p. 170]), this 
would imply m = 52,500 regions and n = l,OOO,OOOt customers, a problem size very 
unlikely to be encountered in a single-vehicle DARP in the real world. A smaller value 
for h would increase n even more. All this leads to the conjecture that if one is to 
maintain computational tractability in this heuristic, then one should be ready to ac- 
cept a rate of convergence which is unlikely to be of any practical value. Indeed, fur- 
ther analysis in [9] showed that a simple O(n’) DARP heuristic devised by this author, 
although by no means asymptotically optimal, matched or even exceeded the perfor- 
mance of Stein’s procedure for finite problem sizes. 

Similar behaviors may be observed in other asymptotically optimal heuristics, not 
necessarily associated with routing problems. Indeed, recent analysis by the author 
and his colleagues have revealed similar symptoms in a known heuristic for the planar 
K-median problem. This investigation is still ongoing and will not be reported here. 
The author is also aware of sparse similar observations by other researchers with re- 
spect to other asymptotically optimal algorithms. 

How can one explain such types of behavior? One can speculate on one plausible ex- 
planation at this point: It is generally recognized that the probabilistic analysis of 
heuristic algorithms lends itself only to heuristics whose structure is very simple, even 
naive, with the words “simple” and “naive” referring not to the ingenuity in the design 
of those algorithms, but t o  the coupling and interdependence of the algorithms’ stages. 
In those terms, any “nontrivial” heuristic generally has the property of introducing 
strong dependencies between its stages, thus rendering its probabilistic analysis intract- 
able (this is the main reason such analysis has not been attempted thus far for other 
TSP heuristics, such as that of Lin and Kernighan [5] ). 

Unfortunately, while the structural simplicity of such heuristic algorithms is a defi- 
nite advantage in facilitating their probabilistic analysis and Can be usually exploited to 
prove asymptotic optimality, it is exactly this same feature that is likely to cause such 
undesirable characteristics as slowness of convergence, looseness of error bounds and 
computational intractability in more typical problem sizes. There are in fact two steps 
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in the algorithm of [6] where such structural simplicity is manifested: The first is the 
suppression of the combinatorial structure of the problem at  the aggregate level where 
the stochastic objective function is replaced by a deterministic equivalent. The second 
is the partitioning scheme at the detailed level, which, as the authors of [6] quite cor- 
rectly emphasize, is simpler than the one proposed by Karp in [4].  Both structural 
simplifications are ingenious because they ultimately imply asymptotic optimality for 
both levels of the algorithm. However, this author conjectures that the same two fea- 
tures ultimately work against the performance and tractability of this algorithm for 
typical problem instances and finite problem sizes. 

There seems to  be n o  question among operations research theoreticians and practi- 
tioners that there is often significant disparity between a heuristic algorithm’s worst- 
case performance and its performance in practice, and that such a disparity can lead to 
misleading conclusions regarding the practical merits of the algorithm in question. We 
believe that equally significant is often the gap between what can be proven probabilis- 
tically (or asymptotically) and what can be observed in practice, and that equally mis- 
leading conclusions can be drawn. For all the insights it may provide to  intuitively 
explaining why a “poor” heuristic from a worst-case viewpoint may in fact perform 
decently in practice, probabilistic analysis may often raise more questions regarding 
the real-world viability of certain algorithms than it can answer. 

Given the above, there is clearly a need for more research in this area. Specifically, 
with few exceptions (and these typically refer t o  easier, well-understood combinatorial 
problems), most analyses to  date have examined the issue of asymptotic optimality 
only from a first-order probabilistic viewpoint. An extension of such analyses into a 
study of second-order effects (such as the variance of the optimal value as a function 
of problem size) would definitely provide a better understanding of heuristics for hard 
combinatorial problems. From a practitioner’s viewpoint, an algorithm’s robustness 
(intimately linked to  the above variance) is likely to be much more important than 
that algorithm’s ability to  produce arbitrarily small errors for arbitrarily large problem 
sizes. 

Ultimately, developing tight error bounds as functions of problem size, as well as 
precise expressions for the probabilities that such tight bounds are valid seems to  be a 
worthwhile goal. Whether such an ambitious goal would bring about the development 
of a new generation of analytical methods in this area remains to be seen. 

I wish to  thank the Editor and the referees for their comments. During the last 3 to 
4 years I have also benefited from various inputs I had on this general subject from 
Marshall Fisher, Bruce Golden, Tai-Up Kim, Amedeo Odoni, Jim Orlin, Christos Papa- 
dimitriou, Alexander Rinnooy Kan, and David Stein. 
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