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Abstract-We develop an O(N’) heuristic to solve the single vehicle many-to-many Euclidean Dial-A-Ride 
problem. The heuristic is based on the Minimum Spanning Tree of the nodes of the problem. The 
algorithm’s worst case performance is four times the length of the optimal Dial-A-Ride tour. An analysis of 
the algorithm’s average performance reveals that in terms of sizes of single-vehicle problems that are likely 
to be encountered in the real world (up to 100 nodes) and in terms of computational complexity, the O(N’) 
heuristic performs equally well, or, in many cases, better than heuristics described earlier by Stein for the 
same problem. The performance of the heuristic exhibits statistical stability over a broad range of problem 
sizes. 

I. INTRODUCTION 

The number of papers on routing and scheduling of Dial-A-Ride transportation systems have 
grown quite rapidly during the past few years. For instance, Wilson et al. (1976, 1977) have 
developed routing algorithms for Dial-A-Ride Systems operating in Rochester, N.Y.; Hen- 
drickson (1978) and Daganzo (1978) have developed approximate models to evaluate the 
performance of such systems; Stein (1978a, b) has presented a probabilistic analysis of the 
problem; Sexton and Bodin (1979, 1980) have developed approximate algorithms based on 

Benders decomposition which they have applied to the subscriber Dial-A-Ride system of 
Baltimore, Md; Psaraftis (1980) has developed an exact approach, based on Dynamic Pro- 
gramming for solving the single vehicle problem; Gavish and Srikanth (1979) have developed 
mathematical formulations of the problem; and finally many other researchers have investigated 
routing problems connected or potentially connected in one form or another with the Dial-A- 
Ride problem: Christofides et al. (1980), Jarvis and Ratliff (1980), Baker (1981) and Tharakan 
and Psaraftis (1981). For a comprehensive survey of this and other vehicle routing problems see 
Bodin et al. (1981). 

The Dial-A-Ride Problem (henceforth abbreviated DARP) is a very difficult combinatorial 
problem. In the DARP’s generic version, a vehicle, initially located at a point A, is called to 
service N customers, each of whom wishes to travel from a distinct origin to a distinct destination, 
and then return to A so that the total length of the route is minimized. 

It should be mentioned that this paper refers to the static, immediate-request version of the 
DARP. In that version, all N customers request immediate (as soon as possible) service and no 
new customer requests are considered until all of the above N customers are serviced. In the 
immediate-request version, no customer desired pickup or delivery times are considered. In that 
respect, it should be emphasized that the algorithm developed in this paper makes no attempt to 
satisfy time constraints, and hence is not guaranteed to perform well in case those constraints 
are present. The reader is referred to Sexton and Bodin (1979, 1980) and to Jaw et al. (1981) for 
the time-constrained problem. 

It can be seen that the DARP is a constrained version of the classical Traveling Salesman 
Problem (TSP), the constraints regarding what we call route legitimacy: each customer’s origin 
must precede that customer’s destination on the route. Due to the inherent difficulty of the 
DARP, it is no surprise that all known exact solution algorithms for it are exponential. For 
instance, using Dynamic Programming (DP) to solve the DARP requires an 0(N23N) time 

(Psaraftis, 1980), a fact which limits the tractable problem size to no more than 8-10 customers (or 
17-21 points). 

In this paper, we present an O(N’) heuristic algorithm to solve the Euclidean version of the 
DARP as described above. The algorithm’s worst-case performance is 300% above the optimum 
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and there exists a pathological case in the Euclidean plane in which this upper bound is reached 
asymptotically. 

An extensive analysis of the 0(N2) algorithm’s average performance is subsequently carried 

out. The analysis consists of two parts: First, simulation runs in which the algorithm is applied 
to random problem instances are performed. Various statistics concerning the length of the 
Dial-A-Ride tour as well as each customer’s waiting and riding times are also produced. It is 
seen that the heuristic exhibits a fairly robust “square root” behavior, according to which the 
length of the tour and the average waiting and riding times are proportional to the square root 
of the number of customers requesting service, with the constants of proportionality being 
fairly independent of the size of the problem. Similar behaviors have been found by Stein 
(1978a, b) for the same problem and by a number of other researchers for various other 
combinatorial problems (e.g. Beardwood et al. (1959) for the TSP). Thus, while the heuristic 
itself is intended to be used in an operational setting, its statistical stability can be also useful in 
the preliminary design of Dial-A-Ride systems, in terms of being able to predict the system’s 
performance under given demand conditions. 

The second part of the analysis attempts to answer the question of how much this heuristic 
deviates from optimality on the average. In that respect, a comparison with the algorithms 
suggested by Stein (1978a, b) leads to several interesting observations. 

At the end of the paper we suggest various other heuristics that can be developed using the 
same philosophy as in the O(N2) heuristic. We also discuss various extensions of this work, 
mainly toward the multi-vehicle and dynamic cases. 

2. DESCRIPTION OF THE O(N') ALGORITHM 

The heuristic is rather simple: It is based on the Minimum Spanning Tree (MST) that is 
defined on the N origins and the N destinations of the problem. From the MST in question, an 
initial Traveling Saleman tour T, through the above 2N nodes can be constructed. The heuristic 
of this paper produces a legitimate Dial-A-Ride tour by traversing To in such a way so that no 
destination is visited before the corresponding customer has been picked up. The generic 
version of the heuristic is as follows (Version 0): 

Step 1: Without distinguishing origins from destinations, construct a Traveling Salesman 

tour T, through the 2N points based on their Minimum Spanning Tree (MST). 
Step 2: Choose any customer origin on T,, as the first pick-up point P, on the Dial-A-Ride 

route. From this point, move on T, clockwise until all points are visited and then return to A. 
While doing this, do not visit any point that has been previously visited, or any destination 
whose origin has not been previously visited. Call this Dial-A-Ride tour T,. 

Step 3 (optional): Improve upon T, by performing a sequence of local interchanges, (see 
details below). 

Step 4 (optional): Repeat Step 2 (and optionally Step 3) but moving counterclockwise. 
Choose the tour in which T, has minimum length. 

Step 5 (optional): Repeat Step 2 (and optionally Steps 3 and 4) N times, each time choosing 
a different customer origin as P,. Choose the tour in which T, has minimum length. 

It should be noted that this algorithm belongs to a general class of DARP heuristics, whose 
Step 1 produces (by any method) an initial Traveling Salesman tour T, through 2N points, and 
whose steps 2-5 remain unchanged. In that respect, any TSP heuristic could be used in Step 
1. For instance, the heuristic of Christofides (1976) or the interchange heuristics of Lin (1965) 
and Lin and Kernighan (1973). A comprehensive survey of such heuristics is presented in 
Golden, Bodin et al. (1980). For the purposes of this paper we chose to examine only the MST 
heuristic for the TSP mainly because of its simplicity. 

Obtaining a Traveling Salesman tour To from the MST of 2N points is straightforward. In its 

simplest form, T, can be obtained just by duplicating the MST. In this way, every node is 
visited at least once and thus To is a feasible initial Traveling Salesman tour. An example is 
shown in Fig. l(a), which shows the duplicated MST for a three-customer problem, where the 
origin of customer i is depicted by + i and his/her destination by -i (i = 1,2,3). Figure l(b) 
shows one way to traverse T,,. In this paper we will call such a traversal “circumnavigation”, 
for obvious reasons. 

Of course, shortcuts can (and should) be used to reduce the length of a tour obtained in 
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(a) 

t2 

(b) 

Fig. I. (a) Duplicate MST. (b) Circumnavigate MST. 

such a naive way, for nodes whose MST degree is greater than one will be visited twice or more 
if the above procedure is used. There are two alternative steps in the DARP algorithm where 
the shortcut operation can be performed. The performance of the heuristic has been seen to 
depend on which of these steps is chosen. 

The obvious step to apply shortcuts is Step 1, the formation of T, itself. Doing this will 
produce a To in which each point is visited exactly once. The alternative is to omit this 
operation in Step 1 and proceed immediately to Step 2 with a To which is exactly the duplicated 
MST. Note that Step 2 incorporates a shortcut operation in itself, by not visiting any 
previously visited points. In both cases, shortcuts preserve the legitimacy (feasibility) of the 

DARP tour. 
Surprisingly, despite the fact that shorter Traveling Salesman tours r,, will be produced if 

the first alternative is used, all indications are to the effect that the heuristic performs better if 

the second shortcut alternative is followed. This conjecture stems from the following two 
points: First, the algorithm’s worst-case performance was observed only in cases where 
shortcuts were used in Step 1 (see Psaraftis, 1981a). And second, it seems that a tour To which 
visits some points more than once is likely to provide an increased flexibility in Step 2 of the 
algorithm, and hence, a better chance for a shorter Dial-A-Ride tour. In that respect, executing 
Step 2 with a To that visits points more than once is conjectured to be more useful than doing so 
with a shorter T,, in which each point is visited exactly once. 

Version 0 of the algorithm will therefore be thought of as the version where To is produced 
just by MST duplication and where shortcuts are sought in Step 2. The alternative version of 
the algorithm is called Version 1; in Version 1 To is produced by MST duplication plus 
shortcuts. 

Other versions of the algorithm are Versions 2 and 3, which differ from Versions 0 and 1 
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(respectively) in that the MST, as well as r,, include the starting point A. In those versions, P, 
is the first customer origin that is encountered starting from A and moving clockwise on To 
(Step 2). Steps 3 and 4 are identical to those of Versions 0 and 1 and Step 5 is omitted since 
there is no flexibility on the choice of P,. It has been observed that this lack of flexibility is a 
slight disadvantage in the average performance of Versions 2 and 3 as opposed to the average 
performance of Versions 0 and 1. 

In all versions, a word of caution concerns the application of Step 3 (sequence of local 
interchanges). Figure 2 shows the operation involved in a local interchange, where the route of 
Fig. 2(a) is preferable to the one of Fig. 2(b) if dij + dk,,, - dik - djm < 0, and if k is not the 
destination of the customer whose origin is j. Only if both of these conditions are met (the first 
one regarding route improvement and the second route legitimacy) can we interchange j with k 
on the Dial-A-Ride route. It should be noted that i, j, k and m are adjacent nodes (Fig. 2), and 
therefore the above interchange scheme is a “very local” operation, in the sense that it is not 
generally likely to produce dramatic tour improvements. The concept of k-interchange, intro- 
duced by Lin (1965) and Lin and Kernighan (1973) in their interchange heuristics for the TSP is 
generally a more powerful tool, but is likely to require significant modifications for application 
to the DARP in order to satisfy the route legitimacy constraints. This has been carried out 
recently by the author in developing 2- and 3- interchange procedures for the DARP. Such 
procedures are believed to enhance the local search after an initial Dial-A-Ride tour is produced 
(Psaraftis, 1981b). 

An example on the application of Version 0 of the heuristic is shown in Fig. 3. Figure 3(a) 
depicts the situation after construction of the MST for ten origins ( + ) and ten destinations ( - ). 
The starting point is at A. Figure 3(b) shows the best Dial-A-Ride route obtained by this 
heuristic after execution of Steps 1, 2, 4 and 5. In other words, no local interchange has been 
performed, and it can be immediately observed that there is room for improvement. (Notice 
sequences -8, -3, +5, -4 and +5, -4, -10, -6). Figure 3(c) displays the Dial-A-Ride route after 
all steps of the heuristic have been executed. 

The computational complexity of this heuristic is O(N’). The MST algorithm is, in itself, an 
O(N*) algorithm (Prim, 1957). Despite the fact that it is also possible to find the MST in the 
Euclidean plane in O(N log N) time (Shamos and Hoey, 1975), executing Steps 3 and 5 will still 
require O(N*) time. 

As stated before, this algorithm has a worst-case performance of 300% above the optimum 
and there exists a pathological case in the Euclidean plane where this limit is asymptotically 
reached. The reader is referred to (Psaraftis, 198la) for more details. 

(a) 

(b) 

Fig. 2. An elementary local interchange. (a) is preferrable to (b) if dii t dk, - d,k - d,,,, < 0 and if k # - j. 
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Fig. 3. Application of O(N’) heuristic (Version 0). (a) Construct MST. (b) Best T, without interchange. 
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(cl 
Fig. 3. (c) Best T, with interchange 

3. AVERAGE PERFORMANCE 

An issue which is likely to be of interest to transportation planners much more than the 
algorithm’s worst-case performance is how the heuristic performs “on the average”. It is known 
that an algorithm’s average performance is something which may bear very little or no 
connection with the algorithm’s worst-case performance. Typical demonstrations of this can be 
found in the average performance of the heuristic of Christofides (1976) for the TSP, which is 
reported to be of the order of 10% from the optimum (Golden et al. 1980), in spite of a 50% 
worst-case performance, and in the apparently better average performance of the Lin and 
Kernighan (1973) heuristic, for which worst-case analysis has revealed that in certain patholo- 
gical cases the heuristic’s relative error can be arbitrarily high (Papadimitriou and Steiglitz, 
1978). 

A general approach to evaluating an algorithm’s average performance is to attempt to derive 
a relationship that yields the average of the algorithm’s optimal value (here, the length of the 
Dial-A-Ride tour) for a random problem instance. Examples of such approaches are the 
classical paper of Beardwood et al. (1959) for the asymptotic behavior of the optimal length of 
the TSP, the partitioning algorithm of Karp (1977) for the same problem and the probabilistic 
analysis of Stein (1978a, b) for the DARP. Trying to proceed according to the above method for 
the O(N’) heuristic represents an extremely complicated task, for that method lends itself only 
to heuristics whose structure is particularly simple, even naive. The reason seems to be that any 
non-trivial heuristic generally has the property of introducing strong dependencies between its 
various stages, thus rendering its probabilistic analysis intractable. 

In this paper our approach is as follows: 
First, we perform a series of simulation runs of the algorithm (Version 0) for random 

problem instances. Second, we address the question of how much the heuristic deviates from 
optimality on the average by performing a comparison with the heuristic algorithms suggested 
by Stein. We now describe these results in detail. 
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Each particular run consists of the execution of the algorithm for a problem of N origins 
and N destinations uniformly distributed on the unit square. It should be mentioned here that 
although the uniformity assumption may be appropriate for the general many-to-many case, it is 
not necessarily realistic in cases where many customers travel to a common destination, such as 
a railroad station or an airport. However, the assumption was made mainly for purposes of 
simplicity and compatibility with other analyses of the many-to-many case, and in that respect, 
causes no loss of generality in our study. Any other user-specified distribution could be tested. 

In all runs the vehicle starts from (and finally returns to) the center of the square. Unit speed 
is assumed for the vehicle. For each value of N several runs have been made, each using a 
different random number generator seed. Various statistics are produced, whose minimum, 
maximum and sample average values are tabulated in Table 1. The description of those 
statistics follows: 

(a) Normalized length of the Dial-A-Ride tour. L, the length of the Dial-A-Ride tour is 
normalized by dividing it by q(2N). This normalization scheme is consistent with the results of 
Beardwood et al. (1959) for the TSP and of Stein (1978a, b) for the DARP. Referring to Table 1, 
one can see that L/d(2N) tends to converge to a constant which is fairly independent of N. 
This constant seems to be in the neighborhood of 1.15. 

(b) Normalized average waiting and riding times per customer. For each customer i, the 
waiting time WTi is counted from the moment the vehicle departs from A until that customer is 
picked up. Similarly, the riding time RT, is counted from the moment the customer is picked up 
until that customer is delivered. For a specific random instance of the problem, the quantities 

and 

are unbiased estimators of the average per customer waiting and riding times respectively. 
Table 1 shows that these quantities, normalized by g(2N), seem to converge to constants 
which again are fairly independent of N. These constants seem to be in the neighborhood of 
0.40 and 0.35 respectively. 

(c) Normalized standard deviation of waiting and riding times. The quantities 

and 

are unbiased estimators of the variances of the waiting and riding times respectively. Table 1 
shows that owT and oRT, normalized again by d(2N), seem to converge to values which are 
fairly independent of N (approx. 0.25 and 0.23 respectively). 

(d) Histograms of normalized waiting and riding times. For a series of 10 runs, each for 
N = 50, we have prepared histograms of the normalized waiting and riding times (sample size of 
each = 500 customers). These histograms are shown in Figs. 4(a) and (b). They constitute an 
approximation to the probability distribution of the waiting and riding times of a random 
customer in the system. 

A number of interesting observations concerning the average performance of this heuristic 
can be made: 

(1) This simple heuristic is robust in the sense that it exhibits a fairly consistent “square 
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Table 1. Various statistics from simulation runs, N = 10-50 customers (11-101 points). The minimum, maximum 
and (sample) average value of each statistic are presented 

Rrl/s 

Minimum 

Maximum 

AVerage 

0,/v% 

Minimum 

Maximum 

Average 

1.01 1.01 1.07 1.08 1.07 

1.21 1.15 1.24 1.18 1.21 

1.09 1.04 1.13 1.13 1.15 

0.38 0.38 0.39 0.36 0.34 

0.46 0.47 0.47 0.40 0.46 

0.42 0.42 0.43 0.38 0.40 

0.28 0.23 0.33 0.32 0.30 

0.38 0.30 0.44 0.42 0.38 

0.33 0.25 0.37 0.38 0.35 

0.25 0.23 0.22 0.23 0.22 

0.31 0.30 0.28 0.26 0.29 

0.28 0.27 0.25 0.24 0.25 

0.14 0.18 0.20 0.20 0.21 

0.27 0.23 0.27 0.29 0.27 

0.19 0.20 0.23 0.24 0.23 

root” behavior over a broad range of number of customers. According to this behavior, the 
average tour length, as well as the mean and standard deviation of each customer’s waiting and 
riding time are proportional to the square root of the number of customers requesting service. 
This statistical stability of the heuristic can prove useful for preliminary system design 
considerations, when one would like to have a “quick-and-dirty” method for predicting system 
performance. 

(2) It is also interesting to compare the customer average riding time with the average time 
it would take a customer to go directly from origin to destination. From Table 1 we can see that 
the former is growing roughly as 0.35g(2N) = 0.492/N. The latter is known (Larson and Odoni, 
1980) to be equal to 0.52. It is interesting and perhaps surprising to observe that these two 
quantities take approximately the same value for a value of N as low as 1. This means that the 
average riding time the heuristic would give for the trivial case N = 1 (0.52) remains in the same 
neighborhood (when normalized by d/N) with the value the heuristic would give for large 
values of N (0.49). This argument adds to the robustness of this heuristic. 

3.2 Deviation from optimality 
In his probabilistic analysis of the DARP, Stein (1978a) showed that for N + =, and for 

pickup and delivery points uniformly distributed in a unit area, the optimal length L* of a 
Dial-A-Ride tour converges with probability 1.0 to (4/3)bV(2N) where b is the asymptotic 
constant for the TSP (Beardwood, Halton and Hammersley, 1959). For 6 = 0.765 (the specu- 
lated, approximate value of b) this means that L*/d(2N) converges with probability 1.0 to the 
value of 1.02. Stein has actually described a simple DARP heuristic whose asymptotic error is only 
6% above the optimum (Stein 1978b), plus another, more sophisticated heuristic which is 
asymptotically optimal (Stein 1978a). Since Table 1 shows that the heuristic of this paper produces 
Dial-A-Ride tours for which L/d(2N) = 1.15, that is, about 13% above the asymptotic value of 
1.02, a natural question to ask is the following: “What is the value of the O(N’) heuristic if it 
produces tours which on the average are 13% longer than the optimum and potentially can be much 
longer than that?” 
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Fig. 4. Histograms of (a) WTi/\l(2N) and (b) RTJd(2N) f rom simulation runs. Sample size: N = 50, 10 runs 
(500 customers). 
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Addressing this very important issue requires some investigation into Stein’s analysis. 
Stein’s simple heuristic (henceforth referred to as Stein’s Heuristic #l), optimally solves two 

TSP’s, one on the N origins and one on the N destinations and then traverses the two tours 
sequentially. The result is Dial-A-Ride tour whose length converges with probability 1.0 to 
2b-\/N (two TSP’s of N nodes each). This length is asymptotically 6% longer than the optimum 
length of (4/3) b-\/(2N) (Stein, 1978b). It should be noted that since this algorithm assumes that 
the two TSP’s are solved exactly, it requires a computational effort which is exponential with 
respect to N. Thus, if a Dynamic Programming (DP) algorithm is used to solve each TSP (Held 
and Karp, 1962) Stein’s Heuristic Bl has an 0(N22N) complexity. This implies that Stein’s 
Heuristic Rl is tractable only for problems involving no more than N = 15 customers and that the 
cost of any attempt to check its rate of convergence to the 6% figure is prohibitive. 

Table 2 presents a comparison of our O(N’) heuristic with the exact 0(N23N) algorithm of 
Psaraftis (1980) and with Stein’s Heuristic 81 for a series of simulation runs for small problem 
sizes. Such a comparison is necessarily limited because of the computational difficulties that the 
0(N23N) algorithm encounters if N is in the range of 8-10 customers or more. It should be 

noted that the figures reported for Stein’s Heuristic #I are lower bounds for what that heuristic 
would actually give, since we modified the heuristic so as to produce optimal Dial-A-Ride tours 
subject to the constraint that the set of all origins should precede the set of all destinations, 
rather than connect two TSP tours arbitrari1y.t We observe that indeed the size of problems 
examined is too small for Stein’s Heuristic Rl to converge to its 6% asymptotic value. We also 
observe that the O(N’) heuristic produces shorter tours than Stein’s Heuristic #l for the 
majority of cases. 

For greater problem sizes, Stein’s Heuristic #l is very quickly out-performed by the O(N’) 
heuristic in terms of computational effort. A more sophisticated heuristic which seems suitable 
to compare our heuristic to if N is large is the asymptotically optima1 heuristic suggested by 
Stein and referred to as Stein’s Heuristic f2. In that heuristic, the area of service is partitioned 
into M regions of equal size. On the “first pass” through the regions the vehicle collects in 

tSuch a modified algorithm can be readily developed via a straightforward screening procedure in the state space of the 
exact DP algorithm of Psaraftis (1980). 

Table 2. IJd(2N) for three DARP algorithms applied to small problem instances. Each row represents a particular 
problem sampled from a uniform distribution on the unit square. Figures in parentheses are percentages above 

optimality. Stein’s Heuristic #I is modified so as to produce improved DARP tours (see text) 

Exact DP O(N2) Heuristic Stein's Heuristic 

Algorithm I 1 (modified) 

N=3 0.70 0.70 (0%) 0.70 (0%) 

1.15 1.15 (0%) 1.38 (20%) 

0.85 0.85 (0%) 0.85 (0%) 

N=4 0.80 0.80 (0%) 0.87 (9%) 

0.82 0.82 (0%) 0.82 (0%) 

1.13 1.14 (1%) 1.26 (12%) 

N=5 0.71 0.71 (0%) 0.90 (27%) 

1.29 1.37 (6%) 1.31 (2%) 

0.85 0.85 (0%) 0.97 (14%) 

N=6 0.86 0.90 (5%) 0.91 (6%) 

1.30 1.45 (12%) 1.42 (9%) 

1.07 1.16 (8%) 1.18 (10%) 

N=7 0.84 0.88 (5%) 0.97 (15%) 

1.17 1.22 (4%) 1.42 (21%) 

0.80 1.01 (26%) 1.01 (26%) 

N=8 0.84 0.93 (11%) 0.91 (8%) 

0.97 1.06 (9%) 1.06 (9%) 

1.20 1.30 (8%) 1.39 (16%) 



Analysis of an O(N’) heuristic for the single vehicle many-to-many Euclidean Dial-A-Ride problem 143 

region i (i = 1,2,. . . , M) all origins in that region as well as delivers all destinations from 
regions1,2,..., i - 1. On the “second pass” through the regions the vehicle visits the remaining 
destinations in each region. If an exact TSP algorithm is used for the routing in each region, this 
heuristic produces Dial-A-Ride tours for which L/d(2N) converges to 1.02 with probability 1.0, 
hence the heuristic is asymptotically optimal. 

It is interesting to shed some light on the assumptions that Stein used to establish this result, 
as well as to discuss the practical implications of these assumptions on the rate of convergence of 
L/g(2N) towards the asymptotic value of 1.02 and on the algorithm’s computational complexity. 
The issue of convergence is of particular importance if one asks for what finite values of N does 
Stein’s Heuristic #2 start to behave as an optimal algorithm; this is an issue that has not been 
investigated in the literature to date. 

An important assumption in Stein’s analysis is that not only N + w but also that the number 
of regions M, as well as the number of customers N/M within each region go to infinity, for 
only if the latter is true can one use the Beardwood, Halton and Hammersley (BHH) results for 
the lengths of the TSP tours that are defined in each region. If an exact, DP algorithm is used 
for those TSP’s, then Stein’s Heuristic B2 exhibits a running time of O(M(N/M)2 2N’M) = 
0(N22NIM/M). This time can be polynomial with respect to N for certain rates of growth of M 
with respect to N, provided that both M and N/M go to infinity. One such type of growth (but 
not the only one possible) is M = N/lgN where Ig denotes the logarithm of base 2. If this is 
true, then the running time becomes O(N’lgN), indeed polynomial with respect to N. However, 
for N = 50 customers (the highest value for which we made simulation runs), this would imply 
approx. 9 regions, and between 5 and 6 customers per region, numbers which are probably too 
small for the BHH results to converge (Eilon et al., 1971, p. 170). N = 100 would change those 
figures to 15 regions and between 6 and 7 customers per region, and N = 1000 to 100 regions 
and around 10 customers per region. If 20 customers per region are considered as adequate for 
the BHH results to converge in each individual region, then this would imply about 52,500 
regions and slightly over one million customers. 

Of course, other rates of growth of M can produce a polynomial running time as well. A 
slower rate of growth, say, M = (lI3)NIlgN would imply 5 regions and a total of about 100 
customers for 20 customers per region. However the running time of such an algorithm would 
be 0(N41gN), time that is certain to be prohibitive if N is large. A faster rate of growth would 
lower the algorithm’s complexity but slow down its rate of convergence even more. 

The practical implication of the above analysis is the following: If one is to maintain 
computational tractability in Stein’s Heuristic #2 (in the sense of a low power polynomial 
complexity), then the range of convergence of that heuristic to an asymptotically optimal 
behavior is of the order of thousands (if not millions) of customers. For problems of smaller 
size, the assumptions underlying the performance of this heuristic become less and less valid 
and the preformance itself more and more uncertain. A similar observation was made by 
Golden et al. (1980) for the performance of an algorithm methodologically very similar to 
Stein’s, Karp’s partitioning algorithm for the TSP (1977). 

Based on the above, the idea of comparing the simulation results of the O(N’) heuristic that 
were presented earlier in this section for 10 5 N 5 50 directly with the asymptotic value of 1.02 
does not seem to have a very strong practical justification. An approach that we pursued 
instead was the following: 

We ran the O(N’) heuristic and Stein’s Heuristic f2 for four cases of N = 50 customers (101 
points) uniformly distributed on the unit square. We chose M = 9 subdivisions by assuming a 
M = N/lgN growth which guarantees an 0(N21gN) running time for Stein’s procedure. The 9 
subdivisions were assumed to be l/3 x l/3 squares, boxed in a 3 x 3 fashion inside the unit 
square. The TSP’s defined in each subdivision were solved exactly and interconnected by 
visual inspection arbitrarily, as in Stein’s procedure, usually by deleting their longest links. The 
results appear in Table 3. We observe that the 0(N2) heuristic performs better in three out of 
four cases and that Stein’s procedure itself consistently deviates from its asymptotic value of 
1.02. Thus, this investigation seems to indicate that, for the sizes of single-vehicle problems that 
are likely to be encountered in the real world, the 0(N2) heuristic performs equally well as, or, 
in many cases, better than Stein’s procedures with respect to both computational complexity 
and tour length despite the apparent superior theoretical performance of the latter for N +w. 
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Table 3. L/d(ZN) for the O(N’) Heuristic and Stein’s asymptotically optimal Heuristic #2. Each row represents a 
different problem (N = 50 customers). 9 subdivisions were used for Stein’s procedure (see text). Figures in 

parentheses are percentages above the asymptotic value of 1.02 

O(N2) Heuristic Stein's Heuristic II 2 

1.17 (15%) 1.22 (20%) 

1.31 (28%) 1.23 (21%) 

1.12 (10%) 1.33 (30%) 

1.22 (20%) 1.31 (28%) 

We conclude this unusually lengthy discussion with a rather philosophical note: It is clear 
that the preceding analysis is, to some extent, unfair for Stein’s procedures, since the range of 
problem sizes at which we tested those procedures (N up to 50 customers) turned out to be 
quite different from the range they were designed for (N = “large”). This is so because this 
analysis has produced rather strong evidence that “large” for the DARP probably means “much 
larger than 50”, a fact that was not made clear in Stein’s work, or anywhere else in the literature 
to date. In all fairness to the above author, we should mention that Stein’s intent was not to 
produce algorithms for the problem in question, but to provide insight and understanding into 
the structure of algorithms for the problem, and argue that a certain class of simple algorithms 
works well (Stein, 1981). By the same token, we also feel it is equally misleading to test the 
performance of the O(N’) heuristic (or any other DARP algorithm) for those “small and 
intermediate” problem sizes, against limits that can be reached only asymptotically, and, most 
likely, only for very large problem sizes. It is therefore our belief that the analysis of this 
section has also identified some possible pitfalls in comparing algorithms designed t? work 
under different settings and shed some light on other important points regarding the evaluation 
of an algorithm’s average performance. 

4. DIRECTIONS FOR FURTHER RESEARCH 

As mentioned in Section 2, many other DARP heuristics which are structurally similar to 
ours can be developed. Practically any heuristic that produces a Traveling Salesman tour T,, 

can replace Step 1 of our algorithm. As an example, we can use the heuristic of Christofides 
(1976) for an initial Traveling Salesman Tour. If this is the case, it is easy to show that the 
worst-case performance of the DARP heuristic would drop to a 200% error ratio, and its 
complexity would increase to 0(N3). No computational experience with any of those alternative 
heuristics exists to date (see Psaraftis, 1981a). 

The development of sophisticated k-interchange procedures to make successive improve- 
ments in the Dial-A-Ride tour is a potentially more promising direction. However, com- 
putational experience with these algorithms is still limited (Psaraftis, 1981b). 

Another direction that has been pursued by the author and his colleagues concerns the 
multi-vehicle case (Jaw et al., 1981). In this case, the O(N*) heuristic of this paper has been 
incorporated into a multi-vehicle, advance reservation algorithm. Grouping customers into 
clusters, satisfying pickup or delivery time constraints and maximizing vehicle productivity are 
the algorithm’s concerns. 

A final and very important direction concerns developing a dynamic version of the 
algorithm. In the dynamic version, customer requests arrive and are considered dynamically in 
time. In (Psaraftis, 1980) it was shown that the conversion of the static version of the algorithm 
to its equivalent dynamic version is relatively straightforward. However, the results of the last 
section will no longer be true if the algorithms operate in a dynamic environment. For instance, 
the average rate of customer requests will now play a major role in determining the probability 
distribution of the random customer’s waiting and riding time. Queuing considerations will 
become important, in a yet unspecified fashion. An analysis of that aspect of the problem is 
very important for the design of a real-time Dial-A-Ride dispatching system. 
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