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This paper investigates the application of a new class of neighborhood search algorithms—cyclic transfers—to multivehicle
routing and scheduling problems. These algorithms exploit the two-faceted decision structure inherent to this problem
class: First, assigning demands to vehicles and, second, routing each vehicle through its assigned demand stops. We
describe the application of cyclic transfers to vehicle routing and scheduling problems. Then we determine the worst-
case performance of these algorithms for several classes of vehicle routing and scheduling problems. Next, we develop
computationally efficient methods for finding negative cost cyclic transfers. Finally, we present computational results for
three diverse vehicle routing and scheduling problems, which collectively incorporate a variety of constraint and objective
function structures. Our results show that cyclic transfer methods are either comparable to or better than the best
published heuristic algorithms for several complex and important vehicle routing and scheduling problems. Most
importantly, they represent a novel approach to solution improvement which holds promise in many vehicle routing

and scheduling problem domains.

Vehicle routing and scheduling problems com-
prise an interesting and important class of
combinatorial problems (Magnanti 1981, Bodin et al.
1983, Laporte and Nobert 1987, Golden and Assad
1988). Their economic importance is marked by their
presence in many areas of the manufacturing and
service industries. In practice, countless variations of
these problems exist. The most common may involve
physical vehicles, but often the term vehicle is used
quite abstractly.

To date, neighborhood search algorithms for vehicle
routing and scheduling problems have focused almost
exclusively on single vehicle problems such as the TSP
(Croes 1958, Lin 1965, Lin and Kernighan 1973,
Stewart 1987, Johnson, McGeoch and Rothberg 1987)
and constrained versions of the TSP (Psaraftis 1983,
Savelsbergh 1985, van der Bruggen, Lenstra and
Schuur 1991). Aside from finding locally optimal
transfers for each wvehicle through its assigned
demands, these procedures do not easily extend to
multivehicle problems. Bodin and Sexton’s (1983)
swapper heuristic for dial-a-ride problems, the 3-opt

method of Baker and Schaffer (1986) for time con-
strained vehicle routing problems, and the k-opt pro-
cedure of Potvin, Lapalme and Rousseau (1989) for
the MTSP are the only local search procedures we are
aware of that are specifically designed for multivehicle
problems.

In this paper, we investigate the application of a
new class of neighborhood search algorithms—cyclic
transfers—to multivehicle routing and scheduling
problems. We show that despite their poor theoretical
worst-case performance and inherent computational
complexity, these methods are either comparable to
or improve the best published heuristics for several
complex and important multivehicle routing and
scheduling problems.

The paper is organized as follows. Section | reviews
the theory of cyclic transfers, and extends it for vehicle
routing and scheduling problems. Section 2 analyzes
the worst-case performance of cyclic transfer algo-
rithms for this group of problems. Section 3 develops
a computationally efficient approximation scheme
for finding negative cost cyclic transfers for vehicle
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routing problems. Finally, Section 4 summarizes com-
putational experience with several different vehicle
routing and scheduling problems.

1. CYCLIC TRANSFERS

To keep this paper relatively self-contained, we briefly
review the theory of cyclic transfers, as applied to
vehicle routing and scheduling. The interested reader
should refer to the source papers (Thompson 1988
and Thompson and Orlin 1989) for details.

The central concept behind cyclic transfers, as
applied to vehicle routing and scheduling problems, is
the attempt to improve the total cost of a set of routes
by transferring small numbers of demands among
routes, in a cyclical manner. Thus, cyclic transfer
algorithms exploit the two-phase “cluster/route” deci-
sion structure that underlies these problems. Cyclic
transfers apply to vehicle routing and scheduling prob-
lems as follows: Let [I, ..., I""] be the set of routes
that form a feasible solution to a vehicle routing and
scheduling problem. Let p be a cyclic permutation of
asubset of {1, ..., m}, for example, p = (2 5 3) maps
2 into 5, maps 5 into 3, and maps 3 into 2. Thus
p(2) = 5, p(5) = 3, and p(3) = 2. The simultaneous
transfer of demands from F to I*" for each j is a cyclic
transfer.

In this paper, we restrict our attention to a special
class of cyclic transfers, cyclic k-transfers. These trans-
fer exactly k demands from F to I*Y? for each j for
some fixed integer k. A special case is b-cyclic k-
transfers, which occur if the cyclic permutation has
fixed cardinality b. Figure 1 shows a 3-cyclic 2-trans-
fer, with I' = {A4,, A,, A3, As, As}, I* = {B\, B,, Bs, B,
By, I’ = {C\, C,, G35}, I* = {D\, D, D3, D4}, and p =
(1 2 3). This cyclic transfer simultaneously moves
{A,, A3} from I' to I%, {B,, Bs} from I* to I’, {C,, C3}
from I° to I', and leaves I* unchanged.

We also study a generalized class of cyclic k-transfers
by allowing k dummy demands on each route. This
allows the transfer of (real) demand sets among per-
mutations (rather than cyclic permutations) of routes.
A special case, applied by Bodin and Sexton to a dial-
a-ride problem, occurs when p has cardinality 2. These
k-transfers simply transfer k real demands from one
route to another.

The cost of a cyclic transfer is the change in optimal
objective function value caused by the cyclic transfer.
Let I = (I', 1% ..., I?Yand J = {J', J*, ..., J?°|
represent a set of p routes before and after a cyclic
transfer occurs, and let f(J) represent the optimal cost
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Figure 1. The effect of a 3-cyclic 2-transfer.

of route I. Then the cost of the cyclic transfer is
p N
S ) =S

The cyclic transfer neighborhood of a feasible solu-
tion r to a vehicle routing and scheduling problem is
the set of feasible solutions reachable from r via a
cyclic transfer. Moreover, r is cyclic transfer optimal
(CT-opt) if no member of the cyclic transfer neigh-
borhood of r has a better objective function value, i.e.,
if all cyclic transfers for r have nonnegative cost.
An analogous definition holds for cyclic k-transfer
neighborhoods.



Thompson and Orlin develop a general methodol-
ogy for cyclic transfer neighborhood search, which
involves transforming the search for negative cost
cyclic transfers into a search for negative cost cycles
on an auxiliary graph. We apply their method to
vehicle routing and scheduling problems as follows.
Let G* = (V*, A*, C*) be an auxiliary graph, defined
by

V* = {sets of k distinct demands on the same route};

A=, )1, je VK 1) #I()), route  I(j)+i—j}
is feasible);

Ck={c;:(i,]) € A*} are arc costs,

where I(j) denotes the route to which a set j of k
demands is assigned. For a minimization (maximiza-
tion) problem, the cost ¢; of each arc (i, j) in A* is
equal to the increase (decrease) in the cost of route
1(j), due to simultaneously adding i to and removing
J from I()), i.e., ¢;; = fU(j) + i = j) — fI(j)). Here ¢;
does not include any costs due to removing / from
I(7) or adding j to any other route.
Thompson and Orlin show the following theorem.

Theorem 1. Negative cost cyclic k-transfers correspond
uniquely to negative cost cycles through distinct clus-
ters, i.e., cycles whose vertices correspond to demand
sets in different routes in G*.

Thus, the search for negative cost cyclic transfers is
equivalent to the search for negative cost cycles
through distinct clusters in G*. We will see in a later
section that finding such cycles is difficult. Nonethe-
less, our computational results show the efficacy of
this approach to solving vehicle routing and schedul-
ing problems.

Thompson shows that for any k it is possible to
have so poor an assignment of demands to vehicles in
a VRP that all arcs in G* (and, hence, all cyclic
transfers) have negative cost. Indeed, it is not hard to
construct instances that are 3-optimal as well. While
such situations undoubtedly occur rarely in practice,
they do illustrate the appeal of methods for improving
cluster quality, such as cyclic transfers.

2. WORST-CASE ANALYSIS

In this section we develop performance guarantees for
cyclic transfer algorithms for vehicle routing and
scheduling problems. In undertaking this analysis, we
focus on the Euclidean metric, because worst-case
results using this restricted metric provide a valid
lower bound for the worst-case performance of more
general (e.g., triangle inequality) metrics.
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We begin with the classical VRP. We wish to find
R,., the worst-case error ratio of cyclic k-transfer
optimal tour length to optimal tour length, for arbi-
trary k. For any VRP algorithm that optimally routes
each vehicle over its demands, it is easy to show
(Thompson) that an upper bound on R,. is m, the
number of vehicles, if arc costs satisfy the triangle
inequality. We demonstrate that this bound is tight
for cyclic transfer methods.

Theorem 2. The Euclidean VRP cyclic k-transfer algo-
rithm has a worst-case performance equal to m, the
number of vehicles, for all k.

Proof. Consider the following Euclidean VRP
instance. Let m radial lines emanate from a central
depot and be separated, in succession, by angles
of 6 radians with § <« 2x/m. On each radial line,
locate (k + 1) unit demands a unit distance from the
depot. On (m — 1) of the lines, locate an additional
(m — 1)(k + 1) unit demand a distance 6 from the
depot. Set vehicle capacities at m(k + 1) units.

The solution in which each vehicle serves all the
demands on one radial line is cyclic k-transfer optimal,
for a total distance of 2m. The optimal solution allo-
cates one vehicle to all customers a unit distance from
the depot and m — 1 vehicles to the inner customers,
for a total distance of 2 + 3(m — 1)§. As & decreases
to zero, R, asymptotically approaches m.

Now, we show that no performance guarantees exist
for cyclic transfer procedures for multidepot and
tardiness-minimizing VRPs.

Theorem 3. The multidepot Euclidean VRP cyclic
k-transfer algorithm has unbounded worst-case
performance for all k.

Proof. Consider the VRP instance illustrated in
Figure 2, with depots at nodes 1 and 5. Each depot
houses one vehicle with capacity 3(k + 1) units. Each
node, aside from the depots, houses (k + 1) unit
demands. The routes [1, 2, 3, 4, 1] and [5, 6, 7, 8, 5]
are cyclic k-transfer optimal, with total length
4(1 + ). If 26 =< L, then the tours [1, 2, 7, 8, 1] and
[3, 6, 3, 4, 5] are optimal, with total length 125. As
5 — 0, R, increases without bound.

Theorem 4. (Thompson) The cyclic k-transfer algo-
rithm has unbounded worst-case performance for the
tardiness-minimizing VRP for all k, where tardiness
is the nonnegative portion of lateness.

We omit the proof. It suffices merely to point out
a case with zero optimal tardiness for which there
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Figure 2. A CT-opt multidepot VRP solution.

is a cyclic transfer neighborhood that does not con-
tain a zero-tardiness solution. This result is to be
expected, and we must be cautious in interpreting it.
It is not uncommon for heuristics to fail to find a
zero-valued solution when one exists and, because of
this, have unbounded worst-case error ratio. For such
problems, the standard error ratio criterion is rela-
tively meaningless (Fisher 1980).

The results of this section easily extend to the un-
capacitated case by setting capacities arbitrarily high.
They also extend to O-D problems by replacing each
demand with an O-D demand whose origin is located
arbitrarily close to the depot, and whose destination
is the original demand site.

These worst-case results contrast with the perfor-
mance ratios derived by other researchers. For ex-
ample, Frieze, Galbiati and Maffioli (1982) examine
a number of heuristics for the asymmetric TSP,
including arc-interchange methods for the asymmetric
TSP. Most of these have R, = Q(n). For the symmet-
ric case, the best known worst-case ratio is for
Christofides’ heuristic for which R,. = (3n — 2)/n. In
addition, Solomon (1986) finds Q(») worst-case per-
formance for a number of VRSPTW algorithms,
including arc interchange algorithms. The difference
between these Q(n) results and our O(m) ratio stems
from the fact that we assume the individual tours are
optimized after each cyclic transfer.

Our results show that the worst-case performance
of cyclic transfer methods is very poor for vehicle
routing problems. Fortunately, however, the structure

of worst-case problem instances is not typical of prac-
tical problems. Our computational results show that
cyclic transfers exhibit behavior similar to the A-opt
methods of Lin, and Lin and Kernighan for the TSP,
which have unbounded worst-case performance
(Papadimitriou and Steiglitz 1978), but which perform
quite well in practice (Lin 1965, Johnson, McGeoch
and Rothberg 1987).

3. APPROXIMATE CYCLIC TRANSFER
NEIGHBORHOOD SEARCH

Three factors cause cyclic transfer neighborhood
search to be inherently complex for vehicle routing
and scheduling problems. In this section, we discuss
these factors, develop approximate search methods to
circumvent the difficulties they cause and, finally,
present algorithms based on these methods.

The first factor is that each arc cost calculation in
G* involves solving an NP-hard problem. This is
because the cost of each arc (ij) in G* represents the
change in objective function due to simultaneously
removing demand set j from and adding demand set
[ to j’s current route /(j), and optimally resequencing
I(j)’s new set of stops, i.e., solving a TSP or related
problem on the new set of stops.

The second factor is that the number of arcs in G*
is large. For a VRP with m vehicles, each serving n
demands, there are m(m — 1)(})* arcs in G*. For fixed
k, this quantity reduces to O(m*n**) arcs. Since each
arc cost computation is itself difficult, the computa-
tional effort required to find all arc costs in G* is
unmanageable even if m, n and k are small.

The third complicating factor is that the problem of
finding a negative cost cycle through distinct clusters
in G* is itself NP-hard (Thompson and Orlin). Since
this search is equivalent to the search for negative cost
cyclic transfers, it is unlikely that one can search the
neighborhood completely in polynomial time.

Because of these difficulties, we use two methods to
approximate the neighborhood search problem. First,
we use a polynomial-time approximation for the aux-
iliary graph arc costs. Second, we search only a
restricted subset of the cyclic transfer neighborhood.
The combination of these methods reduces the com-
putational requirements to reasonable levels.

The polynomial-time arc cost function approxima-
tion proceeds as follows. For each ¢; € C¥, remove
demand j from its route; then find the minimum cost
insertion of demand i into the resulting route without
resequencing. We call cyclic transfers that use this
approximate cost function least-cost insertion cyclic
transfers, or LCI cyclic transfers. We say that a



solution is LCI cyclic transfer optimal (LCI CT-opt) if
no LCI cyclic transfer can improve its value. In this
respect, the following considerations are important
(see Thompson for the details).

1. Any solution which is CT-opt is LCI CT-opt, but
not vice-versa.

2. LCI cyclic transfers are a special class of the
A-change procedures of Lin (1965) and Lin and
Kernighan (1973) for sufficiently large A. In particular,
the LCI b-cyclic, k-transfer neighborhood of a vehicle
routing and scheduling problem is a subset of the
3bkg-change neighborhood, where ¢ is the number of
stops each demand requires (e.g., two stops for
demands with pickup and delivery). An implication
of this is that if a set of routes is 3bkg-opt, then it is
also LCI b-cyclic, k-transfer optimal.

3. The above considerations characterize LCI cyclic
transfers in terms of A-changes. However, from a
practical standpoint, the number of edges involved in
these A-changes is enormous. For example, b, &, and
g have lower bounds of 2, 1, and 1, respectively. For
these values A = 6. By contrast, reasonable computa-
tion time requirements limit A to a maximum of three
in practice for fixed-depth A-change methods. Hence,
LCI cyclic transfers search a subset of a very large (and
powerful) A-change neighborhood.

4. The fact that the LCI cyclic transfer neighbor-
hood is a proper subset of the A-change neighborhood
implies a lack of relation between A-optimality and
LCI cyclic transfer optimality. In practice, this can
affect route cost estimates, thereby confounding
between-route suboptimality and within-route sub-
optimality. Thus, unless the LCI cyclic transfer algo-
rithm maintains within-route local optimality for
individual routes, LCI route cost estimates may range
far from their true values.

5. An advantage of the LCI approximation is that it
induces some structure into the cost calculations for
distance-minimizing problems, which we can then
exploit when designing an algorithm. For instance,
consider the cyclic k-transfer auxiliary graph for the
classical VRP with k = 1. Let T=1[0, 1, 2, ..., n,
n + 1] be the sequence of stops for a VRP route,
where stops 0 and n + 1 both represent the depot.
Without loss of generality, let the three cheapest inser-
tions of stop i into 7 occur after stops r, s, and ¢, and
have costs C,, C;, and C,, respectively, with C, <
C, < C,. Then for all j € T, the least cost insertion of
ionto T — joccurs after one of r, 5, t,and j — 1, Le.,
¢ € {C,, C;, C,, Ci(j)}, where Ci(j) is the cost of
inserting i between stops j — 1 and j + 1 once stop J
is removed.
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The proof is as follows. If #n < 3, then we are done.
Otherwise, there are three cases:

Casel. (j & {r,r+ 1}) Then ¢, = min{C\(j), C,}.

Case2. (j=r) Ifjg (s, s+ 1}, then ¢; = min{C()),
C,}. Otherwise, j = r = 5 + | because, by assumption,
r and s are distinct. Then j & {¢, ¢t + 1}, because t &
{r, s}. Then ¢; = min{C,(j), C,}.

Case 3. (j=r+ 1) Thisreducesto case 2 by labeling
ras r + 1 and vice versa.

This demonstrates that we know, before removing j
from its route, that the minimum cost insertion loca-
tion of I into the resulting route occurs after one of
four stops. Furthermore, for each i, three of these
specified stops are identical no matter which demand
is removed from the route. This is similar to the
separable cost situation (Thompson and Orlin), where
the costs of adding and removing demands are inde-
pendent. Because the independence is incomplete in
our case, we say that the LCI approach induces partial
separability into the auxiliary graph cost matrix.

We exploit this property in the following arc cost
calculation algorithm for the VRP.

Fori:=1to Ndo
For veh := 1 to m, veh # I(i) do
begin
Determine C,, C;, and C,
For j:=1to n,. do
begin
Determine C;(/)
Ifjei{rr+ 1
Thenif j=5+ 1
Then ¢; = min{Ci(j), C}
else ¢; = min{C,(}), C,}
else ¢; = min{C.(j), C.}
end {for j}
end {for veh}.

Here veh indexes routes, m is the number of vehicles,
Mve 15 the number of demands on vehicle veh, and the
sequence [1, ..., K] indexes the demands on vehicle
veh. The overall work required for this algorithm is
O(N?), because each insertion calculation takes O(1)
work. This is considerably better than the O(N’n)
work required by the brute force procedure, which
would perform O(N?) minimum cost insertion cal~
culations each requiring O(n) work.

These results easily generalize to precedence
constrained problems and other classes of distance-
minimizing problems. However, they do not apply to
problems with time-based objectives such as lateness



940 / THOMPSON AND PSARAFTIS

Table I
Description of Cyclic Transfer Modules

Module Description
2CIT 2-cyclic 1-transfer
3CIT 3-cyclic |-transfer
vCI1T Variable depth cyclic 1-transfer starting

with 3C1T

2ACIT 2-cyclic 1-transfer with dummy demands
3ACIT 3-cyclic 1-transfer with dummy demands
vACIT Variable depth dummy demand cyclic

1-transfer starting with 3ACIT

MCIT A sequential combination of variable depth
and 2-cyclic 1-transfer, which adds
dummy demands only to a specified
target vehicle

MCITx Better of the initial solution and MCIT
applied to the initial solution

2C2T 2-cyclic 2-transfers

vC2T Variable depth cyclic 2-transfers starting

with 2C2T

and tardiness because, for these problems, costs
incurred at different points on a vehicle’s route are
not independent. Nonetheless, special data structures
may partially alleviate the computational require-
ments of arc cost calculations for these problems as
well (Thompson).

The second approximation scheme for cyclic trans-
fer neighborhood search involves searching a restricted
subset of the cyclic transfer neighborhood. We do this
in two ways. First, we limit the initial search to small
negative costs cycle, i.e., 2-cycles or 3-cycles in G¥,
and then use a variable depth approach to attempt to
increase both the cycle length and the cost improve-
ment. Second, we generate and search only part of the
graph G*. This reduces the computation time require-
ments both for computing auxiliary graph arc costs
and for searching the auxiliary graph. In the spirit of
Or’s (1976) TSP heuristic, rather than examining the
transfer of every set of X demands served by each
vehicle, we consider transferring only sets of demands
that are served adjacently on a vehicle’s route. For
example, if a vehicle serves the demand set {5, 7, 12,
3, 8} in that order, then G° contains the element sets
{5, 7, 12}, {7, 12, 3}, and {12, 3, 8}, but no others
involving demands 5, 7, 12, 3, or 8. This reduces the
number of nodes in G* from O(mn*) to O(mn).
Moreover, the number of arcs becomes O(m?n?), so
that the size of G* is independent of k.

The generic cyclic transfer algorithm is as follows.

STEP 1. Initialize:
Read in data.
Set up data structures.
Set k and b.
Find an initial solution.

STEP 2. Find a A-opt solution to each route in
the current solution.
STEP 3. Setup G*:
Define nodes and arcs.
Compute arc costs.
STEP 4. While G* contains a negative cost cycle

through b distinct clusters, do begin
If specified, use variable depth proce-
dures to find a cyclic transfer of more
negative cost.
Perform the cyclic transfer: update
routes.
Find a A-opt solution to each route in
the current solution.
Update G*: Redefine nodes and arcs as
needed.
Update arc costs as needed.
end
Output final routes and STOP.

The modules that we use to find cyclic transfers are
listed in Table I. These modules identify and imple-
ment negative cost cyclic 1- or 2-transfers involving
two, three, or a variable number of routes. The vari-
able depth modules take 3-cyclic transfers as input. In
addition, we vary the parameter MAXCYCS. This
parameter determines the maximum number of cyclic
transfers that each module finds before the overall
procedure calls the next module in sequence. Thus, it
regulates the “mixing” of different types of cyclic
transfers from different modules.

To obtain good initial solutions, to maintain accu-
rate route cost estimates, and to be able to separate
the effects of within-route from (between-route) cyclic
transfer improvement, we maintain within-route local
optimality at all times, as indicated above. We use
Lin’s 2-opt heuristic and Or’s (1976) 3-opt method for
the VRP; and Savelsbergh’s 2-opt procedure for the
VRSPTW.

The main data structures are organized around
routes, vehicles, demands, and G*. A doubly linked
list holds all route information. In addition, we use
arrays with partial route data when calculating G* arc
costs. Arrays, linked via pointer elements to the route
list, contain vehicle and demand information. The
cost matrix C* is stored in a series of 1-dimensional
array records, one per demand.

4. COMPUTATIONAL EXPERIENCE

In this section, we present computational results with
cyclic transfer algorithms for three vehicle routing and



scheduling problems: the classical vehicle routing
problem (VRP); a problem with time-windows, pre-
cedence constraints and a tardiness-minimizing objec-
tive (PCVRSP); and a problem with time window
constraints and a hierarchical objective (VRSPTW).
Our motivation for choosing these problems is their
diversity. This enables a better assessment of the value
of cyclic transfers as a general solution strategy for
vehicle routing and scheduling problems.

4.1. The Vehicle Routing Problem

The classical VRP involves a homogeneous, capaci-
tated vehicle fleet, a single depot, and a set of weighted
demands. The goal is to form a minimum distance set
of routes that services all demands. Christofides,
Mingozzi and Toth (1979) and Bodin et al. (1983)
treat this problem in detail.

To assess the performance of cyclic transfer methods
on the VRP, we tested several different sequences of
cyclic transfer modules and two values of the param-
eter MAXCYCS, Table II lists the three most success-
ful sequences, RP1, RP2, and RP3. For each of these,
the sequence of modules repeats until no module can
find a negative cost cyclic transfer.

We used the standard problems of Eilon, Watson-
Gandy and Christofides (1971) described in Table III
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for testing. We obtained initial tours by determining
the minimum fleet size that could carry the given set
of weighted demands and then using random demand
sequences to form tentative initial routes. If a set of
tentative routes exceeded vehicle capacity, then we
transferred a few demands at a time among vehicles
until capacities were satisfied. Thus, the initial tours
were good with respect to vehicle utilization, but poor
with respect to distance.

Table III summarizes the best solution values found
for each problem, and compares these solutions with
the initial solutions and with solutions found by other
methods from the literature: the savings method
of Clark and Wright (1964), the sweep heuristic of
Gillette and Miller (1974), the 3-opt method of Lin
(1965), the tree search procedure of Christofides,
Mingozzi and Toth (1981), and the generalized assign-
ment heuristic of Fisher and Jaikumar (1981). Cyclic
transfers perform nearly as well as the optimization-
based generalized assignment heuristic, and uniformly
better than the other methods when started from
random solutions. Moreover, the magnitude of the
percentage improvements over the initial solutions
indicates both the poor quality of the starting clusters
and the ability of cyclic transfers to improve
cluster quality in suboptimal VRP solutions. In this

Table 11
Cyclic Transfer Test Sequences
Sequence
Number MAXCYCS Module Flow Sequence

RPI 0 (vC2T, 2C2T), (vCI1T, 2C1T), (vAC1T, 2ACIT)

RP2 o (vCIT, 2C1T), (vACI1T, 2ACIT)

RP3 5 vACIT, vCIT, 2ACIT, 2C1T

SP1 0 MCIT, vACIT, 2ACIT, vCIT, 2CIT

SP2 3 MCITx, vACIT, 2ACIT, vCIT, 2CIT

SP3 o MCITx, vCIT, 2CIT, vACI1T, 2ACIT

SP4 o vACI1T, 2ACI1T, vCIT, 2CIT

Table II1
VRP Computational Results and Comparison
50 Nodes 75 Nodes 100 Nodes
5 Vehicles 10 Vehicles 8 Vehicles
Route % Over Route % Over Route % Over
Solution Method Distance CT-OPT Distance CT-OPT Distance CT-OPT

Initial OR-opt 946 79.5 1,592 85.5 1,579 88.2
CT-OPT 527 858 839
General Assignment 524 -0.6 857 —0.1 833 -0.7
Tree Search 534 1.3 871 1.5 851 1.4
Sweep 532 0.9 874 1.9 851 1.4
3-opt (best of 3) 556 5.5 876 2.1 863 2.9
Savings 585 11.0 900 49 886 5.6
Best CT method RP1 RP2 RP3
CT CPU time (min:sec.) 3:08.7 5:35.5 11:29.7
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regard, they can be used to great advantage as part
of a two-phase route construction/improvement
method.

4.2. A Precedence Constrained Vehicle Routing
and Scheduling Problem

Precedence constrained vehicle routing and schedul-
ing problems arise naturally in freight shipping, dial-
a-ride, and other practical distribution systems. The
distinguishing feature of these problems is that each
demand requires pickup and delivery. Normally, the
pickup stop must precede the delivery stop on
the same route. Bodin et al. review several of these
problems.

The specific problem that we consider (the
PCVRSP) is the ship routing and scheduling problem
studied by Psaraftis et al. (1985). This problem has a
nonhomogeneous capacitated fleet of ships initially
located at various points in the ocean, and a set of
cargoes. Each cargo has specified locations and earliest
time restrictions for pickup and delivery. Other com-
plicating constraints exist for this problem as well, e.g.,
ship-port and ship-cargo incompatibilities. The objec-
tive is to minimize the total tardiness of all cargoes
where cargoes accrue tardiness if delivered after their
desired delivery time. Ships spend time traveling
between demand locations, servicing (e.g., loading and
unloading) demands, and idling. Idling occurs when a
ship arrives at a pickup (delivery) location prior to
the earliest allowable pickup (delivery) time for the
respective cargo.

To assess the performance of cyclic transfer algo-
rithms on the PCVRSP, we used module sequence
SP4 on problem instances with known zero-tardiness
solutions from Psaraftis et al., starting with good and
poor quality initial solutions. The good routes were
constructed with the rolling horizon heuristic of
Psaraftis et al. The poor quality routes were con-
structed from random demand sequences. Table IV
describes the features of these instances and summa-
rizes computational results as well.

The magnitude of the percentage improvements for
these problems is quite large. We suggest that this is
due, at least in part, to the structure of tardiness-
minimizing problems. First, moving from a subopti-
mal solution to a solution with zero or near-zero
objective value results in near-100% improvement.
Second, reducing or eliminating a small delay in a
vehicle schedule can affect the arrival time at many
subsequent stops, thereby possibly eliminating or
reducing the tardiness of many subsequent deliveries.
Thus, small schedule changes can have an enormous
effect on overall tardiness. Despite this, it is clear that
cyclic transfers perform extremely well, and represent
a significant step beyond the existing state-of-the-art
in solution methodology for the PCVRSP.

4.3. The Vehicle Routing and Scheduling Problem
With Time Windows

Time window constrained problems have received a
great deal of attention in recent years (e.g., Golden
and Assad 1986, Solomon and Desrosiers 1988). In
this subsection, we present computational results for
the Vehicle Routing and Scheduling Problem With
Time Windows (VRSPTW), which Solomon (1987)
treats in detail. This problem has a homogeneous,
capacitated vehicle fleet, a single depot, and a set of
weighted demands with 2-sided time windows. The
windows are hard, meaning that a feasible solution
must assign some vehicle to initiate service during the
designated time interval. This contrasts with soft time
windows, where there is a penalty for initiating service
at a time outside of the designated window. Vehicles
spend time servicing (e.g., unloading) demands,
traveling between demand locations, and idling
(waiting for the beginning of a time window).

The objective is hierarchical. The primary goal is to
find a set of feasible routes that minimizes the number
of vehicles. Savelsbergh shows that, if the number of
vehicles is fixed, then finding a set of feasible routes is
itself an NP-hard problem. Thus, the first objective is
nontrivial. The secondary goal is to minimize route

Table IV
PCVRSP Computational Results
Problem No. of No. of Initial Initial Final % CPU time
No. Demands Vehicles Routes Cost Cost Improvement (Min:Sec.)
1 20 5 Random 614 126 79.5 9:45 PC-XT
2 50 10 Random 1,643 244 85.1 169:03 PC-XT
3 18 4 Random 2,003 4 99.8 0:11.6 IBM 370
4 18 4 Good 5 2 60.0 0:11.3 IBM 370
5 40 8 Good 52 14 73.1 0:82.6 IBM 370
6 52 9 Good 42 0 100.0 0:83.9 IBM 370
7 52 9 Good 10 0 100.0 0:6.2 IBM 370




completion time, i.e., the sum of travel, idle and
service times, where route time begins at time zero.
This allows idle time to be incurred at the first cus-
tomer on each route. The third objective is to mini-
mize the total distance traveled (equivalently, the total
travel time). Somewhat counterintuitively, this third
objective is equivalent to maximizing idle time. This
follows from the second objective and from the fact
that service times are invariable.

For computational analysis, we tested modules SP1,
SP2, SP3, and SP4 on the six standard problem sets
(R1, C1, RC1, R2, C2, and RC2) from Solomon
(1987). These sets contain from 7-12 problem
instances each with 100 demands. The instances vary
in spatial distribution of demand locations (R = ran-
dom, C = clustered, and RC = semiclustered), vehicle
capacity and length of planning horizon (1 = short
horizon and low vehicle capacity, 2 = long horizon
and high vehicle capacity), time window density (the
number of demands with time windows), and time
window width. Fleet size requirements for feasible
solutions range from 2 to 19 vehicles.
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Table V summarizes our computational work.
Numerical entries in this table are means over all
instances in the corresponding problem sets. We com-
pare SP3 results with the best of SP1, SP2, SP3, and
SP4 (best CT), with our implementation of Solomon’s
(1987) best route construction heuristic (BI1), with
the best solutions that Solomon found for each prob-
lem instance using BI1 and several other methods as
well (Solomon) and, where data are available, with
results from the solution improvement methods of
Solomon, Baker and Schaffer (SBS) or of Baker and
Schaffer (B&S).

We used the BI1 module to construct high-quality
initial solutions for the cyclic transfer route improve-
ment steps. This module outputs the best of eight
solutions found with Solomon’s (1987) sequential
insertion heuristic, using different combinations of
parameter and initialization criteria. Solomon reports
the best average results with this method. Since initial
solutions for the B&S and SBS methods were also
found using Solomon’s sequential insertion algorithm,
we expect that they are similar in quality to the SP3

Table V
VRSPTW Computational Results and Comparison
Mean Route Mean Route Mean Idle Percentage Over SP3 Mean CPU
Problem Mean Fleet Time Distance Time Time
Set Method Size (NV) (Rtime) (Distance) (Idle) NV Rtime Distance Idle (Sec.)
R1 SP3 13.08 2,484 1,367 117 65
Best CT 13.00 2,455 1,357 98 -06 -12 -0.7 -16.2
BI1 13.50 2,678 1,407 271 3.2 7.8 2.9 131.6 21
Solomon 13.6 2,696 1,437 259 4.0 8.5 5.1 121.4
B&S 13.42 2,489 1,289 2.6 0.2 -5.7
Cl SP3 10.00 9,965 939 26 31
Best CT 10.00 9,927 917 10 00 -04 =23 -61.5
BI1 10.00 10,169 968 201 0.0 2.0 3.1 673.1 22
Solomon 10.0 10,104 952 152 0.0 1.4 1.4 484.6
RCI SP3 13.00 2,598 1,534 64 61
Best CT 13.00 2,578 1,514 63 0.0 -0.8 -1.3 -1.6
BII 13.14 2,759 1,592 167 1.1 6.2 3.8 160.9 20
Solomon 13.5 2,775 1,597 179 38 6.8 4.1 179.7
R2 SP3 3.09 2,333 1,299 34 260
Best CT 3.09 2,311 1,276 35 00 -0.9 -1.8 2.9
BI1 3.27 2,607 1,394 212 58 11.7 7.3 523.5 65
Solomon 32 2,590 1,449 141 36 110 11.5 314.7
SBS 3.64 2,785 1,239 17.8 194 —-4.6 —100.0
C2 SP3 3.00 9,649 648 1 71
Best CT 3.00 9,645 645 0 0.0 0.0 -0.5 —100.0
BII 3.12 9,781 687 94 4.0 1.4 6.0 9300.0 49
Solomon 3.0 9,755 712 43 0.0 1.1 9.9 4200.0
SBS 3.50 10,159 756 16.7 53 16.6
RC2 SP3 371 2,706 1,672 34 140
Best CT 3.71 2,671 1,634 37 00 -1.3 -2.3 8.8
BII 4.00 3,065 1,774 290 7.8 13.3 6.1 752.9 46
Solomon 39 2,955 1,682 273 5.1 9.2 0.6 702.9
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starting solutions. However, they differ slightly
because of objective function variations. Moreover,
they differ from the Solomon results because these
summarize the best solution found for each problem
using several different methods, rather than solely
reporting the results of his best overall method.

Table V shows that the SP3 cyclic transfer optimal
solutions are superior on average to Solomon’s (1987)
best reported solutions for each problem set. More-
over, cyclic transfer solutions are at least as good in
each objective function category for each problem set.
Furthermore, idle time averages 80.3% less for SP3,
despite the fact that it does not explicitly enter our
objective function hierarchy, whereas it does for
Solomon’s (1987) method. In our case, however, it
serves as a surrogate measure of solution quality,
because it and travel time together represent the only
controllable route variables.

Baker and Schaffer tested a combination of several
insertion heuristics together with 2-opt and 3-opt
within-route and between-route solution improve-
ment methods on the R and part of the C1 problem
set. Unfortunately, a comparison of the R1 results
from their best method (B&S) with SP3 results is
inconclusive because their objective function is sub-
stantially different from ours. SP3 dominates in both
fleet size and total route time, and therefore in our
hierarchical objective function value. However, B&S
dominates in a 50-50 weighted combination of route
time and route distance, which is their chosen objec-
tive function. In fact, of the twelve individual prob-
lems, SP3 finds a better solution five times with the
weighted objective, and eight times with the hierar-
chical objective. Because of this, we tentatively con-
clude that the SP3 and B&S algorithms are
comparable in quality, at least for the problem class
R1. The C1 results are more definitive, because in
each case B&S finds the known optimal solution.
However, they report solutions on only three of the
nine C1 instances. Thus, it is likely that for clustered
problems the B&S algorithm outperforms SP3. None-
theless, in both cases, further research is needed to
provide a direct comparison of the two methods as
well as to evaluate the relative performance of B&S
on the other problem types.

Solomon, Baker and Schaffer report results of
within-route solution improvement procedures (SBS)
on the problem sets R2 and C2. Like Baker and
Schaffer, their objective function gives equal weight
to route time and distance, and ignores fleet size. In
their case, however, SP3 solutions are superior under
both objective function structures. For these problem
sets, cyclic transfer methods clearly dominate.

Comparisons among solutions found by different
cyclic transfer module sequences reveal that better
initial solutions yield better final solutions, i.e., cyclic
transfers are better suited to route improvement than
to route construction. Other comparisons demon-
strate the effectiveness of the MC1T module in reduc-
ing fleet size, and indicate that 3-cyclic transfer
neighborhood search is nearly as powerful as variable
depth search, when used in conjunction with other
modules. In addition, tests on numerous module
sequences show the robustness of the cyclic transfer
approach: Different sequences commonly find iden-
tical or nearly identical solutions. However, certain
module sequences dominate in overall performance.
In particular, SP3 performs better than the other
sequences tested, especially on problems with long
scheduling horizons and large vehicle capacities, and
on semi-clustered problems. If the scheduling horizon
1s short and vehicle capacities are low, then SP3 per-
forms at least as well as other methods, unless
demands are not clustered. In this case, SP1 domi-
nates. Overall, SP3 finds the best solution found
50.9% of the time, compared with 29.1%, 25.5%, and
23.6% of the time for modules SP1, SP2, and SP4,
respectively. Moreover, SP3 uniquely finds the best
solution found 40.0% of the time, compared with
18.2%, 14.6%, and 7.3% of the time for the other
methods. Besides showing the dominance of SP3,
these results indicate that a better solution to a prob-
lem instance may sometimes be found by using
multiple solution methods.

The CPU times for BI1 and SP3 in Table V are
means for each method and problem set, exclusive of
1/0, on a 12 MHz IBM PC-AT clone. For individual
problems, mean CPU time is 105.0 seconds, median
is 68 seconds, and quartiles are 41.5 and 129 seconds.
Times range from 4 to 1,220 seconds.

By comparison, times for our implementation
of the BIl route construction method average 37.1
PC-AT seconds. The fact that cyclic transfer CPU
times are generally longer does not diminish the
usefulness of cyclic transfers: Their ability to improve
VRSPTW solutions of very high quality. Moreover,
one may stop the iterative improvement phase when
a predetermined computation time limit is reached
and still have a better solution.

It is somewhat unfair to compare cyclic transfer
methods with the best route construction heuristic for
the VRSPTW, because this heuristic (BI1) is itself
used to find initial solutions for the cyclic transfer
solution improvement methods. Thus, the important
result of this section is that cyclic transfer methods are
able to improve top-quality initial solutions within



reasonable CPU times. In addition, cyclic transfers
consistently  outperform  within-route  solution
improvement procedures. Finally, cyclic transfers and
between-route solution improvement methods appear
to be comparable, although their relative quality
across objective function and problem types remains
an open question.

5. CONCLUSION

In this paper, we investigated the application of a new
class of neighborhood search algorithms, cyclic trans-
fers, to multivehicle routing and scheduling problems.
First, we described the application of cyclic transters
to this class of problems. Then we determined the
worst-case performance of these algorithms for several
classes of vehicle routing and scheduling problems.
Next, we developed computationally efficient
methods for finding solution improving cyclic trans-
fers. Finally, we presented computational results for
three diverse vehicle routing and scheduling problems,
which collectively incorporate a variety of constraint
and objective function structures.

Our results show that, despite their poor worst-case
performance and their inherent algorithmic ¢complex-
ity, cyclic transfer methods are either comparable to
or better than the best published heuristic algorithms
for several complex and important vehicle routing
and scheduling problems. Moreover, computation
times are reasonable, despite the fact that the neigh-
borhood search problem is itself NP-hard. Most
importantly, however, they represent a novel
approach to solution improvement which shows
promise in the fleet planning domain. We believe that
this class of local search methods points the way
toward further research into neighborhood structures,
other than edge-exchange, for vehicle routing and
scheduling problems.
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