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a b s t r a c t

We explore dynamic programming solutions for a multi-commodity, capacitated pickup and delivery
problem. Cargo flows are given by an origin/destination matrix which is not necessarily symmetric. This
problem is a generalization of several known pickup and delivery problems, as regards both problem
structure and objective function. Solution approaches are developed for the single-vehicle and two-
vehicle cases. The fact that for each cargo that goes from a node i to another node j there may be a cargo
going in the opposite direction provides the motivation for the two-vehicle case, because one may con-
ceivably consider solutions where no cargoes that travel in opposite directions between node pairs are
carried by the same vehicle. Yet, it is shown that such scenarios are generally sub-optimal. As expected,
the computational effort of the single vehicle algorithm is exponential in the number of cargoes. For the
two-vehicle case, said effort is of an order of magnitude that is not higher than that of the single-vehicle
case. Some rudimentary examples are presented or both the single-vehicle and two-vehicle cases so as to
better illustrate the method.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

We are given a graph G(N,A), with N = {0,1,2, . . . ,n} and A being
the set of arcs. In the general case, G is complete. Arc traversal costs
are known and equal to cij and arc traversal times are also known
and equal to tij (i 2 N, j 2 N)-neither is necessarily symmetric. We
assume that cii = 0 and tii = 0. Also we are given an origin/destina-
tion (O/D) matrix [dij], representing the volume of cargo that has
to go from i to j (i 2 Nn0, j 2 Nn0, i – j). This matrix is not necessar-
ily symmetric either. Each cargo is considered a distinct commod-
ity and cannot be split. There can be as many as n(n � 1) such
distinct cargoes to be transported.

A vehicle, at time 0 located at a separate node 0 (depot), has to
visit all other nodes in N, pick up from each node all cargo destined
to other nodes, deliver all cargo coming from other nodes (not nec-
essarily in that order), and finally return to node 0. Each node
i 2 Nn0 can be visited as many times as necessary so as to pick
up and deliver cargoes originating from it and destined to it. These
operations can be combined in a single stop if this is warranted.
Cargoes to or from distinct nodes can co-exist on the vehicle, so
long as vehicle capacity of Q (a known input) is not exceeded. It
is assumed that Q P max(i,j)dij, otherwise the problem is infeasible.
Assume finally that loading and unloading the vehicle takes negli-
gible time. Including non-zero dwell times (which can be

node-dependent and/or cargo quantity-dependent) is a straightfor-
ward extension.

In addition to vehicle trip costs, another component of the cost
is the ‘delay cost’ of the cargo. This cost can be important if timely
delivery of the cargo is significant. It could also be important if the
time to traverse the arcs of the network and/or the quantities to be
transported are non-trivial.1 Components of this cost may be inven-
tory-related, such as storage, lost revenue due to delayed delivery,
etc. We assume that the per unit volume and per unit time cargo de-
lay cost is equal to a for cargo waiting to be picked up (cost accrues
from time 0 until cargo is on the vehicle) and to b for cargo within
the vehicle (cost accrues from time cargo is on the vehicle until cargo
is delivered). Both a and b are constants, and both are P0.

Coefficients a and b may be different for various reasons. For in-
stance, the case a = 0 assumes that cargo is available at the origin
in a ‘just-in-time’ fashion and related waiting or delay costs are
zero. Also, these costs would generally depend on whether the car-
go is at the origin’s warehouse or inside the vehicle.2

The objective of the problem as defined above is to find a feasi-
ble route that minimizes the total costs of the trip. We shall name
this problem VRPPD-G (General version of the Vehicle Routing
Pickup and Delivery Problem). Other than vehicle capacity
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1 This can be the case in long-haul problems, for instance in maritime transport.
2 If the time unit is in days, a lower bound for both a and b is PR/365, where P is the

value of the cargo and R the cargo owner’s cost of capital. This represents the revenue
that is lost due to delayed delivery of the cargo by one day.
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constraints, obviously precedence constraints also exist, in the
sense that each cargo must be picked up before it is delivered.

The rest of this paper is organized as follows. Section 2 explores
the relationship of this problem to other problems that have ap-
peared in the literature. Section 3 develops a dynamic program-
ming algorithm for the problem and tests it on some small-scale
examples. Section 4 extends this to the two-vehicle case. Section
5 presents the conclusions.

2. Relation to other problems-literature

It is straightforward to see that this problem is a generalization
of several pickup and delivery problems that have appeared in the
literature. Perhaps the most rudimentary of these is the so-called
single vehicle many-to-many advance request dial-a-ride problem
(DARP), for which much has been written (see Psaraftis (1980,
1983a,b,c), Sexton and Bodin (1985a,b), Desrosiers et al. (1986),
Cordeau and Laporte (2003), Cordeau (2006), Cordeau et al.
(2008), among others). The term ‘many-to-many’ was mainly used
in the past and meant many origins and many destinations, as op-
posed to ‘many-to-one’ or ‘one-to-many’, where a vehicle distrib-
uted people or cargoes from or to a central depot. The DARP
corresponds to the special case for which n is an even number,
equal to 2m, where m is the number of individual customers
requesting service. For the DARP the O/D matrix is as follows:
dij = 1 only for pairs of the form j = i + m, 1 6 i 6m, and dij = 0 for
all other pairs. An obvious example is shown in Table 1 below.

A variety of objective functions have been examined for the
DARP, most common of which is the minimization of total distance
traveled, or total route cost, which is equivalent to setting a = b = 0
in our case. However, Psaraftis (1980) and Sexton and Bodin
(1985a,b) also examined more general objective functions, some
of which (addressing customer dissatisfaction due to waiting for
the vehicle and spending time in the vehicle) are equivalent in sub-
stance to the one defined for VRPPD-G.

One can see that since the set of DARP nodes is split into a set of
pickup-only nodes (i = 1 to m) and a set of delivery-only nodes
(i = m + 1 to n), there is no sense to visit the same node more than
once. Even though one may conceivably consider a scenario in
which many customers originate from the same node, or even
there are customers moving in opposite directions (one from node
A to node B and another from B to A), the archetypal version of the
DARP considers distinct origins, distinct destinations, and one per-
son for each O/D pair and only in one direction. Under such
assumptions, the typical DARP route visits each node exactly once,
either to pick up or to deliver a customer, and always observing the
‘pickup precedes delivery’ constraints, and the vehicle capacity
constraints, if any. The DARP itself is a generalization of the Trav-
eling Salesman Problem (TSP), and, as such, is NP-hard.

A generalization of the DARP, which is still a special case of our
problem, is the single vehicle version of the so-called vehicle rout-
ing problem with pickup and delivery (VRPPD) – see Kalantari et al.
(1985), Desrosiers et al. (1986), Ruland and Rodin (1997), Cordeau
et al. (2008), and Berbeglia et al. (2007). This has the same O/D
matrix structure as the DARP, the only difference being that the

non-zero elements of the O/D matrix do not take on the value of
1, but can take on any positive value, equal to the volume of cargo
that goes from node i to node i + m. An example is shown in Table 2
below.

The usual objective function of the VRPPD, at least as it has been
examined in the literature, is to minimize total distance traveled,
which again corresponds to the case a = b = 0 in our problem.

It is interesting to note that a significant portion of the O/D
matrices in both Tables 1 and 2 have zero elements, including m
entire rows and m entire columns. In fact, only m = n/2 elements
of the matrix are non-zero.

Yet another special case, which is a variant of the VRPPD, is if all
cargoes that originate from nodes i 2 Nn{0,Z} go to a unique desti-
nation Z 2 Nn0 (cargo volume diZ) and that node Z (a cargo collec-
tion depot) alone sends return cargoes (of volume dZi, not
necessarily equal to diZ) to all nodes. This special case, for which
dij = 0 except if i or j are Z, or the O/D matrix has only one non-zero
row and one non-zero column, the Zth in both cases. This problem
has been examined by Gribkovskaia et al. (2007) and is named
SVRPPD (S for single vehicle). For purposes of notational consis-
tency, we define this problem here as VRPPD-II. Table 3 below
shows an example of an O/D matrix.

Here too we see a significant portion of the O/D matrix having
zero elements, and here too the typical objective function is to
minimize total distance traveled, which again is equivalent to putt-
ing a = b = 0 in our problem.

Still another special case, which is a generalization of the
VRPPD, but for which not much is known to this author, is what
we can name the ‘uni-directional case’ (VRPPD-U). This is if for
each pair (i, j), at least one of dij and dji is zero. This corresponds
(by a proper reordering of the nodes) to the case matrix [dij] has
non-zero entries only below the diagonal, meaning that if a cargo
goes from i to j, there is no cargo going back from j to i. Requiring
that the vehicle visit each node exactly once is tantamount for the
problem to be uni-directional, since the vehicle cannot return to
node i with return cargo from j, if it previously carried cargo from
i to j.

An example of the VRPPD-U is shown in Table 4 below.
The transpose of the above O/D matrix would also constitute a

VRPPD-U problem.
A restricted version of VRPPD-U, also known as the multi-com-

modity one-to-one case, has been examined by Hernández-Pérez
and Salazar-González (2009). In that problem, each node has to
be visited exactly once and the restriction is because a = b = 0.

Table 1
DARP O/D matrix (n = 6).

i/j 1 2 3 4 5 6

1 – 0 0 1 0 0
2 0 – 0 0 1 0
3 0 0 – 0 0 1
4 0 0 0 – 0 0
5 0 0 0 0 – 0
6 0 0 0 0 0 –

Table 2
VRPPD O/D matrix (n = 6).

i/j 1 2 3 4 5 6

1 – 0 0 5 0 0
2 0 – 0 0 10 0
3 0 0 – 0 0 7
4 0 0 0 – 0 0
5 0 0 0 0 – 0
6 0 0 0 0 0 –

Table 3
VRPPD-II O/D matrix (n = 6, Z = 4).

i/j 1 2 3 4 5 6

1 – 0 0 5 0 0
2 0 – 0 4 0 0
3 0 0 – 7 0 0
4 8 3 2 – 6 5
5 0 0 0 2 – 0
6 0 0 0 9 0 –
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Finally, other special cases of our problem can be considered if
some or all of the matrices [dij], [cij] or [tij] are symmetric, if the lat-
ter two matrices obey the triangle inequality, and if coefficients a
and/or b are zero or equal to one another.

Having said the above about all these special cases, to our
knowledge not much has been written for the general problem
VRPPD-G, for which all non-diagonal O/D flows are generally
non-zero and not necessarily symmetric, much less if a and/or b
are not zero and not necessarily equal to one another. It is clear
that this problem is NP-hard, as a special case of it (the DARP) is
NP-hard.

To be sure, VRPPD-G can be modeled as a VRPPD-U problem of
2n nodes, in which each node i is split into two copies, +i and �i,
and whereas node +i sends flows to all nodes +j > +i, node �i re-
ceives flows from all nodes �j < �i. It can also be modeled as a
VRPPD problem of n(n � 1) nodes, in which each node i is split into
(n � 1) copies, each sending cargo to all other nodes (but not to its
own copies) so that only one cargo goes from one node to another
node. As such, it can be solved, at least in principle, by the spec-
trum of techniques used to solve the DARP or the VRPPD. However,
it is not known how effective and efficient these techniques might
be for problems of this structure, and surely little if anything is
known as regards how the more general objective function of
VRPPD-G can be taken on board. The matrix of Table 1 of the DARP
is a long way from the complete matrix of the VRPPD-G, therefore
one would not expect the corresponding problems to be very
similar.

An illustrative example of two solutions for a 4-node VRPPD-G
problem is shown in Table 5 below. Both solutions involve the
same vehicle route, but two alternative pickup and delivery se-
quences. Pij means ‘At node i, pick up cargo destined to node j’
and Dij means ‘At node j, deliver cargo originating from node i’.

One can see in this example that node 4 is visited just once,
while nodes 1, 2 and 3 twice. Also one can see that a mix of loading
and unloading operations takes place at each node. In fact, the se-
quence can be more involved than the above, depending on vehicle
capacity, as will be shown in the examples later in the paper.

It can be shown by induction that a sharp upper bound on the
total number of stops of the vehicle, including its two visits to
the depot, is n2 + 1 (n > 1). That corresponds to the case in which
all dij’s are equal to 1, and so is Q, the vehicle capacity. On the other
hand, for a complete O/D matrix, a lower bound on that number is
2n. Special cases may have lower upper and/or lower bounds.

3. A dynamic programming solution

Returning to our original problem (VRPPD-G), the algorithm
that will be presented below is based on dynamic programming.
It reminisces the approach of Psaraftis (1980) for the DARP, which
it solves in O(m23m) time, that is, in O(n21.73n) time (m being the
number of customers = n/2).3

3.1. State variables

To proceed, we can observe that at any step along the vehicle’s
route, the state of the system can be defined by the following state
variables:

1) L, the node representing the current location of the vehicle
(L 2 N)

2) a n � n matrix [kij], where for any pair (i, j) with i – j (both 2
Nn0), kij is defined as follows:

kij ¼
3 if cargo from i to j has not been picked up yet;
2 if cargo from i to j is on board the vehicle;
1 if cargo from i to j has been delivered:

8><
>:

By convention, if there is no cargo from i to j (dij = 0), we set kij = 1
and this does not change along the vehicle’s route.

When the vehicle is at node 0 before the trip starts, all kij = 3 (for
dij – 0, i – j). When the trip ends, all kij = 1 (i – j). In between, the
k’s can take on the values of 3, 2, or 1, and they are always non-
increasing as we move along the route.

Once the state is (L, [kij]), options on what to do next depend on
the matrix [kij]. With the exception of the case where all entries of
this matrix are equal to 1 (see paragraph 3.4 below), in all other

cases the next state is L0; k0ij
h i� �

, where the next matrix k0ij
h i

is such

that all of its entries are equal to those of matrix [kij], except one,
that of pair (x,y) (x – y), for which k0xy ¼ kxy � 1. The next node L0

is a function of L, x and y.
We distinguish the following cases (paragraphs 3.2 to 3.4

below).

3.2. Loading

This corresponds to the case that one of the k’s, kxy, changes
from 3 to 2. This means that loading takes place at node x, which
may or may not be the same as L. A necessary condition for loading
to take place at node x is that there be at least one i for which
kxi = 3. This condition may not be sufficient, as feasibility should
be checked (see later). Provided feasibility is not violated, then a
cargo of destination y can be loaded onto the vehicle (y 2 P =
{i : kxi = 3}).

If set P is not empty and a loading action is taken, then the next

state is L0; k0ij
h i� �

, where L0 = x and for all pairs (i, j) with i – j, it is:

k0ij ¼
kij � 1 if i ¼ x and j ¼ y;

kij otherwise:

�

Note that even if capacity constraints are not violated, if a < b it may
make sense not to load a cargo (x,y) onto the vehicle when it visits
node x, as this may be more expensive than if this is done later.
However if a P b and there are no capacity constraints, once the
vehicle visits node x, all cargoes originating from that node should
be picked up.

Table 5
Example of a 4-node problem.

Node i Sequence 1 Sequence 2

0 – –
1 P12, P13, P14 P14
2 D12, P21, P23, P24 P21, P23, P24
3 D13, D23, P34, P31, P32 D23, P34, P31, P32
4 D14, D24, D34, P41, P42, P43 D14, D24, D34, P41, P42, P43
1 D21, D31, D41 D21, D31, D41, P12, P13
3 D43 D13, D43
2 D32, D42 D12, D32, D42
0 – –

Table 4
VRPPD-U O/D matrix (n = 6).

i/j 1 2 3 4 5 6

1 – 0 0 0 0 0
2 5 – 0 0 0 0
3 3 7 – 0 0 0
4 8 3 2 – 0 0
5 2 4 4 2 – 0
6 4 3 5 7 2 –

3 In a sense, it also relates to (and is an extension of) the dynamic programming
approach to solving the TSP, see Held and Karp (1962). Such an approach solves a TSP
of n nodes in O(n22n) time.
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It can be seen that if x – L, this action also involves a movement
of the vehicle from L to x prior to loading at x, whereas if x = L the
vehicle only loads at L.

3.3. Unloading

This corresponds to the case that one of the k’s, kxy, changes
from 2 to 1. This means that unloading takes place at node y, which
may or may not be the same as L. A necessary condition for unload-
ing to take place at y is that there be at least one i for which kiy = 2.
Name the origin of the cargo to be unloaded as x 2 U = {i : kiL = 2}.

If set U is not empty and an unloading action is taken, then the

next state is L0; k0ij
h i� �

, where L0 = y and for all pairs (i, j) with i – j, it

is:

k0ij ¼
kij � 1 if i ¼ x and j ¼ y;

kij otherwise:

�

Obviously if set U is empty, there is no unloading option available.
It can be seen that if y – L, this action also involves a movement

of the vehicle from L to y prior to unloading at y, whereas if y = L
the vehicle only unloads at L. It can also be seen that once a vehicle
is at a node L and has several cargoes to unload there, it would not
make sense but to unload all of these cargoes. This observation can
be exploited to reduce computational time.

3.4. return to depot

If all k’s are equal to 1, then there is no other option but to re-
turn to the depot, node 0.

3.5. Stage variable

L and [kij] being state variables, the stage variable s can be de-
fined in terms of L and [kij] as follows.

Vehicle is at depot (start), s = 0
Vehicle is at depot (end), s = 2n(n � 1) + 1
Vehicle is at any intermediate point, s ¼ 3nðn� 1Þ �

P
ði;jÞ:i–jkij

As s can always be defined once L and [kij] are known, we shall
not use it explicitly in our analysis.

3.6. Incremental trip costs

The incremental trip cost associated with going from L to L0 is
cLL0 (0 if L0 = L). But there are also other cost components. In fact,
the time to go from L to L0 is tLL0 (0 if L0 = L), and during that time
delay costs accrue. We compute them as follows.

The total volume of cargo that is not on the vehicle and still
waits to be picked up when the vehicle travels from L to L0 isP
ði;jÞ:kij¼3dij and the delay cost of that cargo for that leg of the trip

is atLL0
P
ði;jÞ:kij¼3dij.

The total volume of cargo that is onboard the vehicle when it
travels from L to L0 is

P
ði;jÞ:kij¼2dij and the delay cost of that cargo

for that leg of the trip is btLL0
P
ði;jÞ:kij¼2dij.

Thus the total incremental cost of going from L to L0 is

INCRðL; L0Þ ¼ cLL0 þ tLL0 a
X

ði;jÞ:kij¼3

dij þ b
X

ði;jÞ:kij¼2

dij

8<
:

9=
;:

It is obvious that INCR (L,L0) = 0 if L0 = L.

3.7. Feasibility

A necessary condition for feasibility is that the total volume of
cargo on board the vehicle is not more than Q, or, that

P
ði;jÞ:kij¼2dij 6 Q . However, this is not a sufficient condition. Even

if this condition is satisfied, if all next states of a particular state
are infeasible, so is the state itself. In that sense, feasibility is
recursive.

3.8. Optimal value function and optimality recursion

We are now in a position to define our optimal value function as
follows.

V(L, [kij]) = Minimum possible total cost to complete the trip from
node L to node 0, by executing all pending actions on pickup and
delivery of the cargoes and observing capacity constraints, given
that the current status of the cargoes is described by matrix [kij].

V is set to infinity (or to a very large value M) if the state (L, [kij])
is infeasible.

Based on all of the above, the recursive relationship for V is
established as follows.

Define set R = {(i, j) : i – j, kij – 1}
Define M = large number
If R = ;, V(L, [kij]) = cL0 (boundary condition)
If R – ;, then

VðL; ½kij�Þ ¼
M if

P
ði; jÞ:kij¼2

dij > Q ;

min
ðx;yÞ2R

INCRðL; L0Þ þ V L0; k0ij
h i� �n o

otherwise;

8><
>: ð1Þ

where for all pairs (i, j) with i – j, it is:

k0ij ¼
kij � 1 if i ¼ x and j ¼ y;

kij otherwise;

�

L0 ¼
x if kxy ¼ 3;
y if kxy ¼ 2

�

and

INCRðL; L0Þ ¼ cLL0 þ tLL0 a
X

ði;jÞ:kij¼3

dij þ b
X

ði;jÞ:kij¼2

dij

8<
:

9=
; ð2Þ

(obviously, if L0 = L, INCR (L,L0) = 0)
The optimal value of the problem is V(0, [kij]0) where [kij]0 is the

‘startup’ [k] matrix, having all non-diagonal k’s equal to 3 (except
those for which the corresponding entry for O/D flow d is zero,
which have k equal to 1).

The DP recursion implied by (1) is a generalization of similar
recursions for the DARP (Psaraftis, 1980; Psaraftis, 1983a) and for
the TSP (Held and Karp, 1962). In it, the sub-problem that is
defined at each particular state is recursively linked with the
sub-problems that are defined for all possible ‘descendant’ states,
as described by set R. A descendant state has all k’s the same with
the current state except one, the one corresponding to the best
next action (x,y), which is reduced by 1. In that sense, time-wise
the k matrix evolves from all elements being equal to 3 (route
start) to all elements being equal to 1 (route end). Computation-
ally, the recursion is executed backwards.4

We also observe that when visiting a node, it makes no sense to
load cargoes at that node before all cargoes destined to that node
have been delivered, even though this could be feasible. This obser-
vation can be (and has been) exploited to reduce computational
effort.

4 There are several alternate ways this backward recursion can be implemented,
depending on the order in which states (L, [kij]) are looked at. In all cases, when a
particular state is being worked on, all of its descendant states should have been
evaluated at a prior step of the procedure.
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Being able to solve the general problem VRPPD-G, this algo-
rithm can obviously also solve all of its special cases, such as the
VRPPD, the VRPPD-II and the VRPPD-U, even in their generalized
forms (a and/or b non-zero).

A straightforward (and quite useful) extension of the above
algorithm is if vehicle trip costs are weighted by a user-defined
‘‘weight’’ W P 0. If so, W should multiply cLL0in (2) and cL0 in the
boundary condition V(L, [kij]) = cL0. Introducing the weight W al-
lows, if so desired, for vehicle trip costs to be weighted differently
from delay costs, including the extreme case W = 0 (objective is to
minimize delay costs only). In the runs that we have implemented,
we have used W = 0 or 1.

3.9. Computational effort

The memory requirements and running time of this algorithm
can be computed in a straightforward way.

Regarding memory, L is O(n), and the number of possible com-
binations of values of the [k] matrix is O(3r), where r is the number
of non-zero O/D pairs, hence memory grows as O(n3r). For a com-
plete graph, r = n(n � 1). For the VRPPD-U case (as defined earlier),
r = n(n � 1)/2. These values can be interpreted as upper bounds, as
r will be lower if the O/D matrix is sparse.5 For a DARP or VRPPD
type of problem (see also earlier), r = n/2, and for a VRPPD-II type
of problem (see again earlier), r = 2(n � 1).

Regarding computational effort, finding the minimum in (1)
takes O(r) time. Updating matrix [k] also takes O(n) time, and each
of the summations in Steps 3 and 4 takes O(r) time. As the sums in
these steps are independent of (x,y), each iteration of the recursion
takes O(r) time, bringing the total computational effort to O(r23r).
This can be as high as O(n43n2

) in the most general case. An excep-
tion is if both a and b are zero, in which case there are no summa-
tions to be taken. In this case the computational effort reduces to
O(n23r).

Obviously such effort is on the high side for anything but small
values of r, especially if matrix [d] is complete. Lower computa-
tional times can be achieved in special cases, for instance in sparse
graphs or for low values of Q. But all these times will still be
exponential.

3.10. Some illustrative examples

Programming the above algorithm is straightforward. We have
carried out such an implementation, in order to test it for small
problem sizes and make a preliminary exploration of its behavior
for selected cases.6 Whereas no ‘heavy duty’ or large-scale version
of the algorithm is currently available, its development is consid-
ered straightforward and is planned for the immediate future.

As an illustrative example, consider that N = {0,1,2,3} (n = 3,
r = 6) and that the time and cost (non-symmetric) matrices are gi-
ven by Table 6:

The (non-symmetric) O/D matrix is given by Table 7.
This means that at each node of this problem (other than the

depot) there are two cargoes, each destined to each of the other
two nodes. There are r = 6 such cargoes in total.

Table 8 displays the optimal solution for a variety of scenarios,
which include variations in:

(a) The objective function, namely coefficients a and b, as well
as weight W (as per section 3.7).

(b) The vehicle capacity Q.

In Table 8, weight W takes on the values of 0 or 1. Zc is the total
vehicle trip cost (irrespective of whether or not this is the objective
to be optimized) and Z is the actual objective to be optimized (total
cost including delay cost).

Note that a vehicle capacity of Q = 21 or above corresponds to
the unconstrained case and that Q = 6 is the minimum vehicle
capacity for the problem to be feasible (the bottleneck here being
d(3,1) = 6).

Some comments on Table 8 are as follows.

1. One can generally see that the optimal route and pickup/deliv-
ery sequence change, sometimes drastically, with a change in
the objective function and/or vehicle capacity. As expected,
the vehicle visits nodes generally more than once.

2. Cases 1 to 4 refer to the scenario where the objective to be opti-
mized is the total vehicle trip cost, that is, if delay costs are
assumed zero (a = b = 0, W = 1). It turns out that any capacity
constraint of Q of 9 or more is essentially superfluous. Note
the (expected) deterioration in the objective function optimal
value when Q goes from 9 to 6.

3. Among these cases note case 4, in which Q = 6, whose solution
is of the form ‘Pij–Dij’ for about half the route (vehicle loads
only one cargo and then immediately delivers it). However, in
segment [P21, P23, D21, P13, D13, D23] more cargoes can fit
into the vehicle and this is exploited.

4. Cases 5 to 9 have W = 0, that is, in these cases only delay costs
are important. Actually in cases 5 and 8 it is a = b = 1 (delay cost
in the vehicle same as delay cost outside the vehicle). Case 6 has
a = 1, b = 0 (delay costs count only for cargoes waiting to be
picked up) whereas case 7 has a = 0, b = 1 (delay costs count
only while cargo is in transit).

5. Note the output of case 7. Even without capacity constraints,
the solution is a sequence of ‘Pij–Dij’ pairs, each involving a
direct shipment of each cargo from its origin to its destination.
Indeed, if delay costs count only while in transit and there are
no other costs, any solution that involves putting more than
one cargo onto the vehicle would have higher delay costs, as
some of the cargoes would travel a circuitous route.

6. Our set of runs finally includes case 10, in which a = b = W = 1
and Q = 6. Contrast this with case 4 (a = b = 0, W = 1 and Q = 6).

In terms of how the k-matrix evolves in an optimal sequence,
this depends on the particular case. In case 1, the evolution is as
follows.

� Vehicle initially is at depot and all k’s are equal to 3.

Table 6
Time and cost matrices [tij] = [cij].

i/j 0 1 2 3

0 – 5 7 3
1 4 – 5 7
2 8 6 – 6
3 3 8 6 –

Table 7
O/D matrix [dij].

i/j 1 2 3

1 – 5 2
2 1 – 4
3 6 3 –

5 We cite here the runs conducted by Hernández-Pérez and Salazar-González
(2009) for a VRPPD-U type of problem, for which the O/D matrices examined were
sparse: even though the maximum problem size was n = 47, the maximum r
examined was 15 (the approach used was MIP decomposition).

6 The computer code has been written in Fortran 95 and implemented on a PC.
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� P31: Go to node 3 to pick up cargo to node 1; change k31 to 2 (all
other k’s the same).
� P32: Remain at node 3 to pick up cargo to node 2; change k32 to

2 (all other k’s the same).
� D32: Go to node 2 to deliver cargo from node 3; change k32 to 1

(all other k’s the same).
� P21: Remain at node 2 to pick up cargo to node 1; change k21 to

2 (all other k’s the same).
� D21: Go to node 1 to deliver cargo from node 2; change k21 to 1

(all other k’s the same).
� D31: Remain at node 1 to deliver cargo from node 3; change k31

to 1 (all other k’s the same).
� P12: Remain node 1 to pick up cargo to node 2; change k12 to 2

(all other k’s the same).
� P13: Remain at node 1 to pick up cargo to node 3; change k13 to

2 (all other k’s the same).
� D12: Go to node 2 to deliver cargo from node 1; change k12 to 1

(all other k’s the same).
� P23: Remain at node 2 to pick up cargo to node 3; change k23 to

2 (all other k’s the same).
� D13: Go to node 3 to deliver cargo from node 1; change k13 to 1

(all other k’s the same).
� D23: Remain at node 3 to deliver cargo from node 2; change k23

to 1 (all other k’s the same).
� Vehicle returns to depot and all k’s are equal to 1.

4. Extension to the 2-vehicle case

4.1. Solution properties

Why would anyone bother examining the 2-vehicle case? This
is the case if two vehicles are available and we want to investigate
how the allocation of cargoes to vehicles may be split so as to
achieve the same objective as that in the single vehicle case. The
fact that for each cargo that goes from i to j there may be a cargo
going in the opposite direction might seem to fit the 2-vehicle case,
because one may conceivably consider scenarios where no cargoes
that travel in opposite directions between node pairs are carried by
the same vehicle. We assume there is no transshipment, that is, if a
cargo is loaded onto a vehicle, it will have to be delivered by the
same vehicle.7

The 2-vehicle case is obviously a special case of the more gen-
eral m-vehicle case (m > 1), which will not be examined here.
The reason we examine the 2-vehicle case is because, as will be
seen, solving it is a straightforward extension of the single vehicle
case, and involves additional computational effort whose order of
magnitude is no more than that of the single vehicle case.

Solving the 2-vehicle case in the classical Vehicle Routing Prob-
lem and in many of its variants involves finding an optimal parti-
tion among nodes of the problem into two disjoint sets, with
each of the vehicles visiting only the nodes of each of these sets.
In the VRPPD-G we are talking not about an optimal partition of
nodes, but about an optimal partition of cargoes, each to be served
by one of the two vehicles.8 And since each of the cargoes corre-
sponds to a unique element of the O/D matrix, we will be looking
for an optimal partition of the O/D matrix. The objective function is
assumed to be the same as in the single vehicle case, minimize
total cost.

The example in Table 9 shows a possible partition of a certain
O/D matrix, with all cargoes served by vehicle 1 being marked by
an asterisk whereas all other cargoes are served by vehicle 2.

If there are r distinct non-zero cargoes, the number of possible
partitions is 2r�1, including the null partition, the one that corre-
sponds to all cargoes going on one vehicle. Note that r can be as
high as n(n � 1), depending on the variant to be examined.

A special type of partition is that for all cargoes, if cargo (i, j) is
on a certain vehicle, cargo (j, i) is on the other vehicle. This, after a
suitable reordering of the nodes, corresponds to a case like the one
shown in Table 10 below. We shall call such a ‘uni-directional’ par-
tition the U-partition. In it, no transpose cargo pairs are served by
the same vehicle.

Table 8
Sample results.

Case 1 2 3 4 5 6 7 8 9 10

a 0 0 0 0 1 1 0 1 1 1
b 0 0 0 0 1 0 1 1 0 1
W 1 1 1 1 0 0 0 0 0 1
Q 9+ 8 7 6 21 21 21 10 10 6
Zc 29 36 37 43 38 29 75 40 34 44
Z 29 36 37 43 356 177 135 386 184 470

Optimal pickup and delivery sequence
(depot at start and end not shown)

P31 P12 P32 P31 P31 P31 P12 P31 P31 P31
P32 P13 D32 D31 P32 P32 D12 P32 P32 D31
D32 D13 P21 P12 D31 D32 P13 D31 D31 P12
P21 P32 P23 D12 P12 P21 D13 P12 P12 D12
D21 D12 D23 P21 P13 P23 P21 D12 P13 P21
D31 D32 P31 P23 D12 D21 D21 D32 D12 P23
P12 P21 D21 D21 D32 D31 P23 P21 D32 D23
P13 P23 D31 P13 P21 P12 D23 P23 P21 P32
D12 D23 P12 D13 P23 P13 P31 D23 P23 D32
P23 P31 P13 D23 D31 D12 D31 D21 D13 P13
D13 D21 D12 P32 D23 D13 P32 P13 D23 D21
D23 D31 D13 D32 D21 D23 D32 D13 D21 D13

Table 9
Example of an O/D matrix partition (n = 6).

i/j 1 2 3 4 5 6

1 – 7⁄ 5⁄ 4⁄ 2 8
2 5 – 6 4 5⁄ 3⁄

3 3⁄ 7⁄ – 3 1 7
4 8 3 2 – 3⁄ 2⁄

5 2 4⁄ 4⁄ 2⁄ – 6
6 4 3 5 7⁄ 2⁄ –

7 Solutions where transshipment is allowed will generally achieve a lower total
cost than those for which transshipment is prohibited.

8 A node partition in this problem does not make sense. In partition
({1,2,3}, {4,5,6}) there may exist cargoes that go from node 1 to node 4, from node
5 to node 3, and so on.
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The number of possible U-partitions is 2r/2, or 1.41r, still an
exponential number, which is however growing much slower than
2r�1. In a U-partition, the problem decomposes into two single
vehicle VRPPD-U problems, as defined earlier, with each vehicle
allocated to the corresponding VRPPD-U problem.

It is important to realize that restricting the search among
possible partitions only to U-partitions is generally sub-optimal.
This is shown by a simple example (n = 3, uncapacitated case,
a = b = 1).

Assume the time and cost matrices of Table 11 where f and g are
positive constants.

Assume finally that dij = 1 for all i and j between 1 and 3 (i – j).
If one is restricted only to U-partitions, it can be seen that the

U-partition of Table 12 is optimal, where the corresponding routes
and loading/unloading sequences are:

Vehicle 1: 0-1-2-3-0: depot, P12, P13, D12, P23, D13, D23, depot
Vehicle 2: 0-3-2-1-0: depot, P31, P32, D32, P21, D31, D21, depot

The values of the objective function are as follows:

Vehicle 1:
Trip cost: 4f
Delay cost: 8f(=2f + 3f + 3f)

Table 10
Example of an O/D matrix U-partition (n = 6). Cargoes marked by an asterisk are
served by vehicle 1, whereas all other cargoes are served by vehicle 2.

i/j 1 2 3 4 5 6

1 – 7⁄ 5⁄ 4⁄ 2⁄ 8⁄

2 5 – 6⁄ 4⁄ 5⁄ 3⁄

3 3 7 – 3⁄ 1⁄ 7⁄

4 8 3 2 – 3⁄ 2⁄

5 2 4 4 2 – 6⁄

6 4 3 5 7 2 –

Table 11
Time and cost matrices [tij] = [cij].

i/j 0 1 2 3

0 – f 100g g
1 g – f 100g
2 100g g – f
3 f f g –

Table 12
Optimal U-partition. Cargoes served by vehicle 1 are marked by an asterisk, whereas
all other cargoes are served by vehicle 2.

i/j 1 2 3

1 – 1⁄ 1⁄

2 1 – 1⁄

3 1 1 –

Table 13
Alternate partition. Cargoes served by vehicle 1 are marked by an asterisk, whereas all
other cargoes are served by vehicle 2.

i/j 1 2 3

1 – 1⁄ 1⁄

2 1⁄ – 1⁄

3 1 1 –

Total cost: 12f

Vehicle 2:
Trip cost: 4g
Delay cost: 8g (=2g + 3g + 3g)
Total cost: 12g
Total cost for 2 vehicles: 12(f + g)

If however partition is as per Table 13, that is, vehicle 1 now
also serves cargo from 2 to 1, in addition to the cargo that goes
from 1 to 2 (and everything else being equal), then the correspond-
ing routes and loading/unloading sequences are:

Vehicle 1: 0-1-2-3-1-0: depot, P12, P13, D12, P21, P23, D13,
D23, D21, depot
Vehicle 2: 0-3-2-1-0: depot, P31, P32, D32, D31, depot

Then the values of the objective function will be as follows.

Vehicle 1:
Trip cost: 4f + g
Delay cost: 12f(=2f + 3f + 3f + 4f)
Total cost: 16f + g

Vehicle 2:
Trip cost: 4g
Delay cost: 5g(=2g + 3g)
Total cost: 9g
Total cost for 2 vehicles: 16f + 10g

It can be seen that if 12(f + g) > 16f + 10g, or if f < 0.5g, the latter
partition achieves a lower total cost than the former. See for in-
stance the case f = 9, g = 20.

Therefore, restricting ourselves to examining only U-partitions
is sub-optimal, and a U-partition strategy is generally a heuristic
one. But as will be seen below, it makes no sense to look at heuris-
tic methods to solve the partitioning problem.

4.2. Solution approach

How can the general 2-vehicle case be solved optimally? We
assume that the two vehicles are identical, including their
capacity Q.

It is clear that for a specific given partition (S1,S2), the total cost
of the optimal solution corresponding to this partition is

UðS1; S2Þ ¼ Vð0; ½kij�01Þ þ Vð0; ½kij�02Þ;

where V is the optimal value function of the single-vehicle case and
[kij]01 and [kij]02 are the individual ‘startup’ k-matrices associated
with the above partition.

For a given partition (S1,S2), these ‘startup’ k-matrices are de-
fined as follows for all pairs (i, j) with i – j, d(i, j) – 0:

(a) If (i, j) 2 S1, then k01
ij ¼ 3, otherwise k01

ij ¼ 1.
(b) k02

ij ¼ 4� k01
ij .

It is indeed straightforward to observe that all (non-diagonal)
elements of any ‘startup’ k-matrix are either 3 or 1 (not 2), and
in fact are linked with one another via the following equation:

k01
ij þ k02

ij ¼ 4 for all pairsði; jÞ; i – j; dði; jÞ – 0:

This means that once the startup matrix of the 1st vehicle is known,
the startup matrix of the 2nd vehicle is also known. If one of the ele-
ments k01

ij in one of the startup matrices is equal to 3, the corre-
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sponding element k02
ij in the other matrix is equal to 1, and vice ver-

sa. There is no way k01
ij or k02

ij can be equal to 2, as this would mean
that the corresponding cargo would be on board the vehicle when
the vehicle is at node 0.

Once the single vehicle problem has been solved, the values of
V(0, [kij]01) and V(0, [kij]02) are already available for any partition
(S1,S2), and so are the corresponding optimal routes. These values
are available since they have been computed in the course of exe-
cution of the single vehicle recursion.

To find the optimal partition (S1,S2)⁄ we will need to minimize
U(S1,S2) over all possible partitions (S1,S2). Doing this by complete
enumeration will take O(2r) time, over and above the time spent to
solving the single vehicle case.

Note that the algorithm for the 2-vehicle case is a post-optimi-
zation step that follows after the single vehicle problem has been
solved. The single vehicle problem is solved only once, and the
post-optimization step is executed also only once.

Due to the above sequential nature, the overall running time of
the 2-vehicle algorithm is O(r23r + 2r), or still O(r23r), as the second
step of the algorithm (picking the best partition) is computation-
ally dominated by the first (solving the single vehicle case).

By same token, one can also extend this approach to examine a
3-partition exact scheme for the 3-vehicle case, but not a 4-parti-
tion scheme, as the former would still be possible in O(r23r) time,
whereas the latter would involve time O(4r).

4.3. Some illustrative examples

As with the single vehicle case, we have also programmed the
2-vehicle algorithm and have implemented it on a set of rudimen-
tary problems, so as to explore the nature of the solutions. Table 14
depicts some runs, the problem instance being the same as that of
section 3.9.

In Table 14, V1 and V2 pertain to results for the 1st and 2nd
vehicle respectively.

One can observe, among other things, that in case 1 (which min-
imizes total vehicle trip costs) only one vehicle is used, and that in
case 2 the optimal partition is a U-partition. No other clearly iden-
tifiable patterns can be observed from this sample, which might
obviously be available by further testing of the algorithm.

5. Conclusions

We have developed a dynamic programming algorithm for solv-
ing a multi-commodity, capacitated pickup and delivery problem.

Cargo flows are given by an origin/destination matrix which is
complete and not necessarily symmetric in the general case. This
problem is a generalization of several known pickup and delivery
problems, as regards both problem structure and objective
function. In addition to vehicle trip costs, a component of the cost
function is the ‘delay cost’ of the cargo. This cost can be important
if the value of the cargo is significant and/or if timely delivery of
the cargo is significant. It could also be important if the time to
traverse the arcs of the network and/or the quantities to be trans-
ported are significant. Components of this cost may be inventory-
related, such as storage, lost revenue due to delayed delivery, etc.

Solution approaches were developed for the single-vehicle and
two-vehicle cases. For the two-vehicle case, solutions where no
cargoes that travel in opposite directions between node pairs are
carried by the same vehicle were shown to generally be sub-opti-
mal. As expected, the computational effort of the single vehicle
algorithm is exponential in the number of cargoes. For the two-
vehicle case, said effort is of an order of magnitude that is not high-
er than that of the single-vehicle case.

Obviously the contribution of this paper is mostly methodolog-
ical, as it proposes an exact method for a problem on which, to this
author’s knowledge, not much has been reported, since all known
solutions to date refer to specific special cases of it. As expected,
the computational effort of such an approach is exponential and
this is expected to limit maximum solvable problem size. However,
lower computational times can be achieved in special cases, for in-
stance in sparse graphs or for low values of the vehicle capacity.

Further work may involve refining this set of algorithms so as to
enhance their computational efficiency and practical usefulness for
realistic problem instances.
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