A Dynamic Programming Approach for
Sequencing Groups of Identical Jobs

HARILAOS N. PSARAFTIS

Massachusetts Institute of Technology, Cambridge, Massachusetts
(Received March 1978; accepted March 1980)

A Dynamic Programming approach for sequencing a given set of jobs in a
single machine is developed, so that the total processing cost is minimized.
Assume that there are N distinct groups of jobs, where the jobs within each
group are identical. A very general, yet additive cost function is assumed.
This function includes the overall completion time minimization problem as
well as the total weighted completion time minimization problem as special
cases. Priority considerations are included; no job may be shifted by more
than a prespecified number of positions from its initial, First Come-First
Served position in a prescribed sequence. The running time and the storage
requirement of the Dynamic Programming algorithm are both polynomial
functions of the maximum number of jobs per group, and exponential functions
of the number of groups N. This makes our approach practical for real-world
problems in which this latter number is small. More importantly, the algorithm
offers savings in computational effort as compared to the classical Dynamic
Programming approach to sequencing problems, savings which are solely
due to taking advantage of group classifications. Specific cost functions, as
well as a real-world problem for which the algorithm is particularly well-suited,
are examined. The problem application is the optimal sequencing of aircraft
landings at an airport. A numerical example as well as suggestions on possible
extensions to the model are also presented.

HE PROBLEM addressed in this paper is that of sequencing a given

set of jobs in a single machine, so that the total processing cost is
minimized. We assume that there are N distinct groups of jobs, in which
the jobs within each group are identical. We also assume a very general,
yet additive, cost function. Specifically, the incremental cost incurred
when processing a job belonging to group m followed by a job belonging
to group n is defined by the general function f(m, n, k1, - -+, k), where
k; is the number of jobs of group i(i = 1, ..., N) still waiting to be
processed. The problem is a “static” one, that is, no intermediate arrivals
of jobs are considered.

In Section 1 the above general problem is formulated and solved using
Dynamic Programming. For a problem of & jobs per group and N groups,
the algorithm’s running time is shown to grow as N%(k + 1)V and its
storage requirement as N(k + 1)". These are polynomial functions of &

1347

Operations Research 0030-364X /80/2806-1347 $01.25
Vol. 28, No. 6, November-December 1980 © 1980 Operations Research Society of America

1348 Psaraftis

but exponential functions of N, so one would expect the algorithm to be
practical for applications for which N is small. Still, this performance
represents an improvement over the performance of the classical Dy-
namic Programming algorithm of Held and Karp (1962) if the latter is
applied to a problem of the same size. For sequencing a total of 2N jobs,
the latter algorithm has a running time which grows as (AN)22*".

The given set of jobs is now considered ordered, in the form of a
specified initial sequence. CPS prohibits the shifting of any particular job
by more than a prespecified number of positions, upstream or down-
stream, from its initial, First Come-First Served position in the queue.
We modify the Dynamic Programming algorithm so that CPS is incor-
porated with no increase in the order of computational effort.

In Section 3, specific types of cost functions f(m, n, ky, ---, ky) are
presented. These include as special cases the minimum overall completion
time problem and the problem of minimizing the total weighted comple-
tion time. Areas where our approach can be applied are presented, the
main one being the problem of sequencing aircraft landings at a single-
runway airport (Aircraft Sequencing Problem).

In Section 4 a numerical example on the Aircraft Sequencing Problem
is presented.

Finally, in Section 5 areas for possible extensions of the model are
suggested, such as the multiple processor problem and the problem of
“dynamic” arrivals of jobs.

1. PROBLEM FORMULATION AND DYNAMIC PROGRAMMING
SOLUTION

It is assumed that the set of jobs to be sequenced can be classified into
N groups, with % identical jobs belonging to group i(i =1, ..., N). It is
also assumed that the incremental cost of processing a job belonging to
group n immediately after a job belonging to group m (where both m and
n are between 1 and N), is given by f(m, n, k1, --., ky) where fis a
prescribed function of m, n and the vector &, with k; being the number of
jobs of group i(i = 1, .- -, N) still waiting to be processed. The objective
is to find a sequence of jobs which minimizes total processing cost.

This problem calls for the determination of a sequence of group indices
(L, Ly, +++ , Lp), with1 <=L, <=N(j=1,...,T)and T =YY, &’ so as
to minimize the sum ¥ 7' f(L;, Lj+1, k7, + -+, ky'). Here %/ is the number
of jobs of group i still waiting to be processed during the interval the jth
job is being processed and T is the total number of jobs in the initial set.

The initial conditions of the problem are specified by (&°, ---, k")
and Lo, the so-called 0-th job. L, is between 1 and N and is the job group
which is being processed just prior to processing the first job of the set.

Sequencing Groups of Identical Jobs 1349

L, is not a decision variable to the problem, but an initial condition which
will, in general, affect the cost of sequencing the first job. If no job is
being processed before the first job, then Ly = 0 (dummy 0-th job). In
this case, we set f(0, n, By, --+ ,ky) =0foralln, &y, -+, kn.

1t is relatively straightforward to solve the above problem by Dynamic
Programming. Define the optimal value function V(L, k;, - - -, kx) as the
minimum total cost to process &; jobs of group (i = 1, ..., N) still
waiting to be processed, given that a job belonging to group L is just
started. V obeys the following recursive relation:

{O,ifk1= ceo=kn=0
VL, Ry ++o, ky) = ymingeex] AL, x, Ry, -+, kn) + (1)
Vix, k', -+, ka')] otherwise

where
and,fori=1, ..., N
, _ JRi=1ifi=x
ki = {k,- otherwise. 3)

This problem is solved as follows: Starting from &, = - - . = ky = 0, where
V =0 for all L between 1 and N, move to lexicographically higher values
of the k-vector. At each N-tuple, apply (1) for all possible values of L
from 1 to N. Each time (1) is applied, record x*, the best next group to
process. This information can be kept in an array, called here NEXT(L,
ki, - -+, kn). Arbitrarily set NEXT(L, 0, ..., 0) = 0 for all L between 1
and N.

Upper bounds on each of the /s can be the given initial values A°.
However, the operation of the algorithm will be much more efficient in
the long run if (1) is solved for all k; between zero and some specified
upper bound value £7**. In this way the optimality recursion is performed
essentially only once. After this single “production-run” is executed, we
solve the problem as many times as desired and for any given set of initial
conditions (Lo, £°, -+« , k3°), aslong as 1 < Lo < N and 0 < &° < £™ for
i =1, ..., N. The additional computational effort to do this will be of
the order of T' = Y¥, £ the algorithm moves forward T steps, from (Lo,
£° « .+, kx® to the terminal state (L1, 0,0, - - - , 0), using the information
already tabulated in the array NEXT. A minor modification concerns
the case where L, = 0 (no initial job specified). In that case, L, the first
job, will be the one that minimizes V(Ly, &°, - - - , £°).

The running time associated with the execution of the optimality
recursion is of the order of N? [[X, (1 + &™), for there are N [[X; (1 +
k%) possible states, and at each of them N next states are examined.
The storage requirement is of the order of N -Hfil (1 + &™) (arrays for

1350 Psaraftis

V and NEXT). If ™ = gk fori =1, ---, N, these bounds become N*(1
+ k)Y for the running time and N(1 + k)" for the storage requirement.
Note that these functions are polynomial with respect to %, the maximum
number of jobs per group, but exponential with respect to N, the number
of groups. Thus, from a practical point of view the algorithm is expected
to be applicable mainly to problems where N is small. One real-world
problem, where N is small, is identified in Section 3.

We make two additional observations concerning the computational
effort implied by the algorithm:

1. Since the optimality recursion needs to be executed only once, the
long term importance of the fact that the running time is growing as
N%(1 + B)V is greatly diminished. It has already been stated that the
marginal running time of the algorithm is a linear function of T, the total
number of jobs. By contrast, storage requirement remains an important
issue. If we are certain that L, # 0, then the array V can be totally
eliminated after the end of the recursion. The array NEXT should be
retained with N(1 + k)" pieces of information in storage.

2. The fact that the algorithm has taken advantage of group classifi-
cation can be seen to result in savings in both running time and storage
requirements. If we consider each of the 2N jobs as a separate entity and
apply the classical Dynamic Programming algorithm of Held and Karp,
a running time of the order of (kN)?2*" will be incurred for the optimality
recursion and storage space of the order of ZN2*Y will be needed.

2. CONSTRAINED POSITION SHIFTING

We now modify the formulation of the problem slightly by introducing
priority considerations. Assume that the set of T jobs to be sequenced is
now ordered, namely there is an initial sequence of jobs (i3, i3, -+, i7),
withl=i=<Nforj=1.--,T.

Imagine, for instance, that this sequence is the sequence in which the
jobs arrived for processing. Also assume that Constrained Position
Shifting (CPS) rules must be followed. According to these, no job can be
shifted by more than a prespecified number of positions, upstream or
downstream, from its First Come-First Served position in the initial
sequence. This prespecified number is called the Maximum Position
Shift (MPS) and, together with the initial sequence (i3, --- , i7), it is a
new input to the problem. If, say, MPS = 3, the job holding the 9th
position in the initial sequence is restricted to be assigned a position
inside the “window” from the 6th up to and including the 12th position
in the final optimal sequence. Clearly MPS = 0 corresponds to FCFS

Sequencing Groups of Identical Jobs 1351

sequencing and no optimization is involved; at the other extreme,
MPS = T — 1 corresponds to the earlier unconstrained case.

The practical importance of CPS is great in a “dynamic” sequencing of
jobs and will be discussed in Section 5. But for the moment, continue
assuming that the problem is “static,” namely that no newly arriving jobs
(that is, jobs other than those in the original set) are accepted for
sequencing.

The CPS problem has been examined by Dear (1976) in conjunction
with his early work on the “dynamic” case of the Aircraft Sequencing
Problem. He used a complete enumeration procedure to examine all
possible permutations in the last (MPS + 1) positions of the queue. Such
an approach exhibits a computational effort growing as (MPS + 1)!, being
thus limited to small values of MPS. In addition, examining only (MPS
+ 1) positions while “freezing” the rest of the queue leads to sub-optimal
solutions.

In this section, we shall solve optimally the CPS problem by Dynamic
Programming for any value of MPS. The objective function is still the
minimization of total processing cost.

The state representation (L, k1, - - - , kw), introduced earlier, is sufficient
for the CPS problem as well, for if we assume an ‘“internal” FCFS
discipline for jobs belonging to the same group, then for a given initial
sequence (i1, - - - , it) not only do we know how many, but also specifically
which jobs per group have (or have not) been processed so far.

An effect of the MPS constraints will be that now there will be states
which will be infeasible. In order to identify the infeasible states, we
proceed as follows:

For a given state (L, &y, .-+, kn), we consider the numberm = T —
', k;. This is the total number of jobs processed so far, and therefore, it
is the position which the job being currently processed (from group L)
holds in the current processing sequence.

From the initial sequence (i}, --., I7) we can uniquely identify the
position the job being currently processed (L) held in the initial FCFS
sequence. To do this, simply scan the above sequence from i, to iz, until
a total of 2. — k. jobs of group L is encountered. The last of these jobs
is the one being currently processed. Denote by LAST(L, k.° — k) this
uniquely identified position; this is the last job from group L held in the
initial FCFS sequence. Arbitrarily set LAST(L, 0) = 0 for all L =
1, .-, N

It is clear that LAST(L, %" — k1) — m is the position shift of the job
being currently processed. This difference can be positive, negative, or
zero depending on whether the corresponding job has been shifted
downstream (forward), upstream (backward) or not shifted at all with
respect to its initial FCFS position.

1352 Psaraftis

It then follows that in order for (L, ki, - -+ , kn) to be feasible, it must
satisfy the following condition:

|LAST(L, k.° — k1) — m| < MPS. (4)

It should be noted that condition (4) is only a necessary, and not a
sufficient condition for feasibility. To determine whether a state which
satisfies (4) is indeed feasible, it is necessary to check its next states. The
following cases may occur:

1. (L, &y, - -+, ky) has no next states. This will happen if by = ... =
by = 0. If (and only if) this is the case, then (4) is also a sufficient
condition for feasibility.

2. (L, k1, +- -, ky) has next states, but none of them is feasible. Then
(L, ky, -+, kn) 18 an infeasible state, for there can be no way to proceed
from the sequence (L, ki, ---, kn) without violating the CPS rules at
some next state.

3. At least one of the states next to (L, k1, +- -, kn) is feasible. Then
(L, ky, ---, k) is a feasible state because there is at least one way to
finish the sequence from (L, %4, - - - , kn) and still satisfy the CPS rules to
the end.

The above arguments reveal the recursive nature of feasibility in the
problem. This means that the feasibility of a state not only depends on
whether or not the state itself satisfies a particular set of conditions (only
condition (4) here, but in general more than one condition), but also on
the feasibility of its next states. The recursive nature of feasibility is
particularly suited to the backward recursion scheme of the Dynamic
Program described earlier. In particular, one can incorporate the reason-
ing in the algorithm by modifying the optimality recursion (1) as follows:

+oo, if [LAST(L, k.° — k1) — m| > MPS
0, if [LAST(L, k.° — kL) — m| = MPS
VL, ky, -+, ky) = and k= ... =ky=0 (5)
min.ex{ AL, x, k1, -+, kn)
+ Vix, ki, -+, k)] otherwise.

In (5) we have assigned an infinite cost to infeasible states. This
includes the possibility that while |LAST(L, k.° — k1) — m| < MPS, all
V’s in the right-hand side are equal to infinity. X and &’ are given by (2)
and (3) as before.

In terms of computational effort, it can be seen that the recursion in
the CPS case is essentially no harder to apply than the recursion in the
unconstrained case. Actually, the recursion’s running time will be
bounded from above by N2.T[X, (1 + &), the actual running time being

Sequencing Groups of Identical Jobs 1353

lower for values of MPS less than T — 1. The lower MPS is, the less
frequently the algorithm will have to execute the third leg of (5), because
most infeasible states result from failure to pass the screening test (4).
Hence, the worst-case performance in the CPS case MPS = T — 1, all
states feasible) is no poorer than the performance of the much simpler,
unconstrained case problem. As before the storage requirement can be
seen to grow as N-[[%; (1 + &7).

There is, however, an important difference between the two algorithms.
In the CPS case, we can no longer solve the optimality recursion only
once and examine, after that, whatever initial conditions we wish by
simply moving forward according to the already tabulated array NEXT.
Neither is it advantageous to solve the problem for upper bounds &P"**
higher than £°. This can be understood from the fact that it is the initial
sequence itself, together with MPS, which determines feasibility, and if
either one of them is changed, one has to execute the optimality recursion
again.

3. SPECIAL CASES AND POTENTIAL APPLICATIONS

Dynamic Programming algorithms have already been proposed for the
solution of general, as well as specific, problems in job shop scheduling;
see, for example, Held and Karp (1962), Baker and Schrage (1978),
Schrage and Baker (1978), and Lawler (1964). Our algorithm can be used
to solve a variety of specialized cases as well.

First, if fim, n, k1, - -+, kx) = t{m, n), then the problem is a minimum
overall completion time (makespan) scheduling problem (Coffman
[1976]), which is exactly equivalent to a classical Traveling Salesman
Problem.

If fim, n, k1, ---, kn) = t(m, n)-YX, kp;, then the problem is a
minimum total weighted completion time scheduling problem (Lawler
[1978]). Here (py, - - - , pn) is a given set of “weights,” one for each group.

p: can be thought of as the per unit time cost of keeping each individual
job of group ¢ waiting to be processed. If all p; = 1, then f(m, n, &y, -+,
kn) = t(m, n)YX, ki and the problem becomes a minimum mean comple-
tion time scheduling problem.

In addition to job-shop scheduling, a very important real-world problem
for which our approach is particularly well suited for application is the
Aircraft Sequencing Problem (ASP). This is the problem faced by the air
traffic controller who must decide on a landing sequence for a set of
airplanes waiting to land, such that a certain measure of performance is
optimized. The “job groups” for the ASP are the distinct categories into
which the set of aircraft can be classified. Here N is usually a small
number (of the order of 3 and at most 5: wide-body jets, medium-sized
jets, ete.). Due to landing kinematics and safety regulations the minimum

1354 Psaraftis

permissible time interval £(m, n) between the landing of an aircraft of
category m, followed by the landing of an aircraft of category n, is a
quantity which is not constant but depends on m, n, their relative order,
landing velocities and the length of common final approach (Blumstein
[1959]). FCFS landing disciplines at airports are among the factors
contributing to delays during peak traffic periods. These delays can, at
least theoretically, be reduced by a suitable optimization in the landing
sequence. In this respect, the D.P. algorithm can be used to examine the
minimization of the Last Landing Time (LLT), that is, land the last
airplane as soon as possible. The algorithm can also be used to minimize
the Total Passenger Delay (TPD), that is, minimize the sum of the
“waiting-to-land” times for all passengers in the system (or equivalently,
the average per passenger delay). In the LLT case, f(m, n, £y, ---, kn)
= #(m, n) and in the TPD case f(m, n, ki, ++-, kn) = t(m, n) - Y%, kip;
where &, is the number of airplanes of category i which are still waiting
to land and p; is the (average) number of passengers (or the number of
seats) of an aircraft belonging to category i(i =1, .-+, N).

What makes our D.P. approach particularly attractive for the ASP is
its CPS feature. CPS is actually a concept which was first developed in
conjunction with the ASP. The main role of CPS in the ASP is to prohibit
sequences which are intolerably biased against some aircraft categories,
particularly in a “dynamic” environment (in which the landing of some
airplanes may be continually postponed due to arrival of aircraft cate-
gories which receive higher priority).

The need for implementing an optimization scheme in the sequencing
of aircraft operations at an airport has been recently recognized by the
Federal Aviation Administration as one of the most important directions
for increasing the current operational capacity of airports (Talley
[1978]). A comprehensive survey of theoretical and implementation prob-
lems regarding the “dynamic” scheduling of aircraft arrivals is given in
Dear (1976), while more details on the D.P. approach to the ASP,
including the two-runway configuration, are presented in Psaraftis (1978).
Section 4 presents a numerical example on the problem.

Another variation of our D.P. approach can be used for the solution of
the single-vehicle, many-to-many immediate request dial-a-ride problem,
for both “static” and “dynamic” cases (Psaraftis [1980]). “Dial-a-ride” is
a general name given to demand-responsive (or flexibly routed) transpor-
tation systems, several versions of which have been in operation in the
United States and abroad (Rochester, N.Y.; Ann Arbor, Mich.; Tokyo,
Japan, etc.). The particular problem examined in Psaraftis (1980) involves
the dispatching of a vehicle to carry customers from distinct origins to
distinct destinations. A generalized objective has been examined, consist-
ing of a weighted combination of the total length of the route and of the

Sequencing Groups of Identical Jobs 1355

total “degree of dissatisfaction” caused to the customers until they are
delivered. It is assumed that, for every customer, the above dissatisfaction
is a linear combination of the time the customer waits for the vehicle and
the time (s)he spends in the vehicle until delivery. CPS considerations
have been incorporated into this problem as well as vehicle capacity
constraints. CPS is particularly useful in the “dynamic” case for elimi-
nating the undesirable possibility of indefinite deferment of a customer’s
request, deferment which may be caused by the possibly unfavorable
geographical location of that customer.

4. A NUMERICAL EXAMPLE

We now present a straightforward application of the algorithm of
Section 2, for a particular instance of the Aircraft Sequencing Problem
introduced in Section 3. In our example, N = 3: category 1 consists of
wide-body jets (B747), category 2 of conventional large jets (B707) and
category 3 of medium-sized jets (DC-9). The time separation matrix was
calculated (Psaraftis [1978]) to be:

96 181 228
[tm,n)] = [72 80 117 | (in seconds)
72 80 90

The (average) number of passengers per category is given by (pi, ps,
ps) = (300, 150, 100).

We assume that T = 15 airplanes are waiting to land. We also assume
the following “pseudorandom” initial FCFS sequence: (iy, is, -+, I15) =
{1,1,3,2,2,3,2,1,2,1, 3, 3,2, 1, 2). This means that our initial conditions
are (k% k2, k") = (5, 6, 4). We arbitrarily assume that sequencing begins
at the instant after an aircraft of category 2 has landed. This is our 0-th
airplane, Lo = 2.

We then apply our CPS algorithm for MPS = 5 and 14 and for both
LLT and TPD minimization as these were defined in Section 3. The
results are shown in Table I. MPS = 14 = T — 1 corresponds to the
unconstrained case. Note how the optimal sequences and the value of the
objective function in Table I change with changes in MPS. Table I also
shows the position shifts of each airplane, as well as the percent improve-
ments of LLT and of TPD by comparison to their FCFS values.

A global picture on how LLT and TPD perform for this particular
example, as functions of MPS, is shown in Figures 1 and 2. Figure 1 shows
the percent improvement in LLT and Figure 2 the percent improvement
in TPD over the FCFS sequence. Solid lines in both figures indicate that
the measure of performance in question is the objective to be minimized
{LLT in Fig. 1 and TPD in Fig. 2). Dotted lines show the behavior of the
alternative measure of performance when the former is optimized (TPD

Psaraftis

1356

%08

006¥991

%8

00E1¥CS

%0%

062E881

%l

008E£€0¢

008E8¢€C

BHLL

€— € L—
144241 € ¢ €
BET

1- b— §—
geel 1 1 1
%11

€- €- ¢
851 € € 3T
%61

- v— 2
vt 1T 1 3
6Ll & I T

(spuooas "ssed)
dd.L

?ﬁ:oommﬂ Q1 ¥I
LTT

€l

6—
€

14 € 0 I- 3¢— ¢ 6
4 ¢ ¢ ¢ ¢ ¢ 1

01-01— ¢ ¢ ¢— ¥vV— 6 8

I

¢

! € € € € ¢ ¢

[

LNHWNHAOHIINI %
S.LATHS NOLLISOd
HONANDIS TYNILIO

LINHWNAAOHINI %
S.LATHS NOILISOd
HONANDIS TYNILJIO

LINHWIAOHINI %
S.LATHS NOLLISOd
HONAN®US TVWILLJIO

LNHNHAOHINI %
S.LAIHS NOILLISOd
HONHNOIS TVINLLJO

HONHN®HAS TVLLINI
YHAHO ONIANV'T

Aadl WU

LTT W
¥ = SdIN

adL W

LTT WA
§=SdIN

WATHOHJ ONIONIANDAS LIVYOUIY THIL NO HTIWVXH TYOIMEWAN V

1 HTdV.L

Sequencing Groups of Identical Jobs 1357

in Fig. 1 and LLT in Fig. 2). Not unexpectedly, the solid lines are
nondecreasing, while this is not generally the case for the dotted lines.
Also, as expected, the solid lines are nowhere below the dotted lines,
because the improvement of the measure of performance (which is the
objective of the problem [solid line]} is, by definition, the maximum
improvement achievable.

5. SUGGESTIONS FOR POSSIBLE EXTENSIONS

The following directions seem appropriate for possible extensions to

our model:
First, the formulation can be extended to include a second processor.

ZSJ
Min LLT
20] /
————————— — — Min TPD
15 r/_‘
/
/,
\ -
10 J \ s
\v/
1
0 T 17 T T T 7T MPS

N S | ¥ T L2 \J T
1 2 3 4 5 6 7 8 910 11 12 13 14
Figure 1. Percentage improvement in LLT with respect to the FCFS
discipline.

This can be done by replacing L in the state vector by (L), Lz}, where L;
is the group currently being processed by machine i. The recursive
relation then becomes
0,if ly=-...=kn=0
V(Ly, Lo, by, ««« 5 k) = {minxeX, y=1, 2l fAl1, Lo, x, B, -+ -,)
+ V(L1’, Lz’, kll, ey kN’)]

where X and %/ are again given by (2) and (3) and

=] if y=i
i L, otherwise.

Storage requirement for this formulation grows as N*(1 + %)~ and
running time as N*(1 + &)V

1358 Psaraftis

An alternative approach was taken in Psaraftis (1978), for tackling the
problem of sequencing aircraft landings in two identical and independent
runways where no priority constraints exist. This consists essentially of
a postprocessing of the optimal information created by a single pass of
the optimality recursion presented in Section 1. LLT minimization is now
a minimax problem. Although an enumeration scheme is used to identify
the optimal aircraft partition, running time and storage requirements are
of the same order of magnitude with those of the single-runway algorithm.
Significant difficulties arise if one attempts to apply this approach for
more than two runways or include priority rules.

A second extension would be the creation of a “dynamic” model where

30 Min TPD

25 -

20 4 r \

10 T /’/ ‘

DU T] ¥ L N ! ¥ i \J X]

1 2 3 4 5 6 7 8 910 11 12 13 14

Figure 2. Percentage improvement in TPD with respect to the FCFS
discipline.

new jobs enter the processing system continually in time. Such an
extension is relatively straightforward and, in fact, has been carried out
for the dial-a-ride problem (Psaraftis [1980]). A “dynamic” model will be
an open-ended sequence of updates, each being performed upon the
arrival of a new job. We would optimize over the existing set of jobs,
producing one tentatively optimal sequence per update. This sequence
will be subject to revision upon the arrival of a new job. CPS can be
particularly important in the “dynamic” case by eliminating the possibil-
ity of some jobs being continually held last in the queue because of their
“unfavorable” characteristics.

Finally, in the minimum weighted completion time sequencing problem

Sequencing Groups of ldentical Jobs 1359

(Section 3), we have assumed that all jobs within a group i have the same
weight p;. This may not be the case in several problems (for example,
actual passenger loads will vary for the ASP among aircraft of the same
category). If such internal variations exist, it is easy to show that it
generally pays to sequence all jobs of each group by nonincreasing order
of weights. However, this issue is complicated if one starts examining
interactions between groups, and if priority considerations are added. A
detailed investigation of such issues is presented in Psaraftis (1978).

ACKNOWLEDGMENTS

I wish to thank Amedeo Odoni and Christos Papadimitriou, both of
M.IT., for their helpful suggestions. I am also indebted to one of the
referees for his careful review and comprehensive comments, and in
particular for his suggestion on the formulation of the two-processor
problem.

REFERENCES

Baker, K. R, anp L. E. ScHracE. 1978. Finding a Sequence by Dynamic
Programming: An Extension to Precedence-Related Tasks. Opns. Res. 26, 111-
120.

BLUMSTEIN, A. 1959. The Landing Capacity of a Runway. Opns. Res. 7, 752-763.

CorrMmaN, E. G., Jr. (ed.) 1976. Computer and Job Shop Scheduling Theory.
John Wiley & Sons, New York.

DEAR, R. G. 1976. The Dynamic Scheduling of Aircraft in the Near Terminal
Area. FTL Report R76-9, Flight Transportation Laboratory, M.L'T., Cam-
bridge, Mass., August.

HeLp, M., anpD R. M. Karp. 1962. A Dynamic Programming Approach to
Sequencing Problems. SIAM, 19, 196-210.

LAWLER, E. L. 1964. Sequencing Problems with Deferral Costs. Mgm¢. Sci. 11,
280-288.

LAWLER, E. L. 1978. Sequencing Jobs to Minimize Total Weighted Completion
Time Subject to Precedence Constraints. Ann. Discrete Math. 11, 75-90.

PsararTtis, H. N. 1978. A Dynamic Programming Approach to the Aircraft
Sequencing Problem. FTL Report R78-4, Flight Transportation Laboratory,
M.LT., Cambridge, Mass., October.

PsararTis, H. N. 1980. A Dynamic Programming Solution to the Single Vehicle
Many-to-Many Immediate Request Dial-a-Ride Problem. Trans. Sci. 14, 130-
154,

ScHRAGE, L. E.,, aND K. R. BAKER. 1978. Dynamic Programming Solution of
Sequencing Problems with Precedence Constraints. Opns. Res. 26, 444-449.
TALLEY, J. R. 1978. Basic Metering and Spacing for ARTS IIl. Systems Research
and Development Service, Progress Report, Federal Aviation Administration,

August.

