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The purpose of this paper is to put dynamic vehicle routing into
perspective within the broader area of vehicle routing, as well as
provide a flavor of recent progress in this area. We identify the
important issues that delineate the dynamic case vis-a-vis the static
one, comment on methodological issues, review generic design features
that a dynamic vehicle routing procedure should possess, discuss the
adaptation of static approaches to a dynamic setting, and describe
an algorithm for the dynamic routing of cargo ships in an emergency
situation. We conclude by recommending directions for further
research in this area.

1. INTRODUCTION

By "dynamic vehicle routing” one traditionally means the dispatching of
vehicles to satisfy multiple demands for service that evolve in a real-time
("dynamic") fashion. The vehicles may be taxicabs, trucks, ships, aircraft,
etc. The service provided may consist of dropping off a passenger to the air-
port, picking up and/or delivering small parcels, delivering gases to indus-
trial customers, shipping troops and materiel in case of a mobilization
situation, or, in general, satisfying a2 wide variety of other tramsportation
or distribution requirements in a broad spectrum of settings.

For all the expleosive growth in the vehicle routing literature over the
past several years (see Bodin et al, (1983), and, more recently, Golden and
Assad (1987)), in a strict sense (see definition in Section 2) very little
has been published on dynamic variants of vehicle routing problems, 0Of the
62 references cited in Golden and Assad {1987), only three include phrases
such as "dynamic', "real-time", or "on line" in their titles. This state of
affairs is to be contrasted with the real-world picture, in which a signifi-
cant proportion of applications are dynamic rather than static. Among publica-
tions that have explicitly addressed a dynamic vehicle routing situation we
may mention several papers or reports in the paratransit (or "demand responsive"
transportation) area, such as Wilson et al. (1971, 1976, 1977) and Psaraftis
(1980}, a paper by Brown and Graves (1981) on the real-time dispatching of
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petroleun tank trucks, the award-winning work of Bell et al. (1983) on the
bulk delivery of industrial gases, a report by Powell (1983) on the dynamic
allocation of trucks under uncertain demand, and a report by Psaraftis et al.
(1985) on the problem of cargo ship routing in a mobilization situation.
This situation reflects the rather scant methodoleogical base in dynamic
vehicle routing as compared to static; indeed, most real-time
implementations of vehicle routing problems are straightforward adaptations
of static approaches. By contrast, the state-of-the-art in other areas that
can be conceivably considered "close relatives" to dynamic vehicle routing,

such as the dynamic dispatching of mobile servers (e.g., ambulances, fire

engines, even tugboats - see Larson and Cdoni {19803}, Minkoff (1985), etc.),

or the dynamic routing in communications networks (see Bertsekas and Gallager

(1987), among others), is relatively rich in specialized methodologies
explicitly developed for these problems.

The purpose of this paper is to put dynamic vehicle routing into
perspective within the broader area of vehicle routing, as well as provide a
flavor of recent progress in this area. It is not the intention of the
paper to be encyclopaedic. Rather, the scope of the paper is to identify the
important issues that delineate the dynamic case vis-a-vis the static one,
comment on methodologital issues, and describe one specific context and
algorithm in the dynamic vehicle routing area.

In Section 2 of this paper we explore the relationship between static and
dynamic routing, by identifying factors that make these two problems
drastically different, and by commenting on the methodological implications
of these differences. In Section 3 we review generic design features that a
dynamic vehicle routing procedure should possess, discuss the
transferrability of static approaches to a dynamic setting, and end by
describing an algorithm for the dynamic routing of cargo ships. Finally,
Section 4 recommends directions for further research in this area by

introducing and briefly discussing the Dynamic Traveling Salesman Problem.

2. DIFFERENCES BETWEEN STATIC AND DYNAMIC VEHICLE ROUTING

In this section we explore the relationship between static and dynamic

vehicle routing problems by focusing on those elements that make dynamic
routing different from static, and hence generally necessitate specialized
solution procedures for dynamic vehicle routing problems.

To make our discussion more clear, we define a vehicle rcuting problem as
"static" if the assumed inputs to this problem do not change, either during
the execution of the algorithm that solves it, or during the eventual

execution of the route. By contrast, in a "dynamic" vehicle routing problem,
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inputs may (and, generally, will) change (or be updated) during the execution
of the algorithm and the eventual execution of the route. Actually,
algorithm executicn and route execution are processes that evolve
concurrently in a dynamic situation, in contrast to a static situation in
which the former process clearly precedes (and has no overlap with) the
latter.

Dynamic vehicle routing differs from static in several ways, some of them
obvious, some less obvious. The main differences are listed below. For
dynamic vehicle routing:

(1) Time dimension is essential;
(2) Problem may be open-ended;
(3) Future information may be imprecise or unknown;
(4) Near-term events are more important;
(5) Information update mechanisms are essential;
(6) Resequencing and reassignment decisions may be warranted;
(7) Faster computation times are necessary;
{8) Indefinite deferment mechanisms are essentialj
(G) Objective function may be different;
(10) Time constraints may be different;
{11) Flexibility to vary vehicle fleet size is lower;
(12) Queueing considerations may become important.
We now discuss each of these points and their implications in some detail.

(1) Time dimension is essential

In static vehicle routing, the time dimension may or may not be an
important factor in the problem. If it is, the problem is usually termed a
routing and scheduling problem. However, not all static situations have a
scheduling compenent. Actually, most classical generic routing problems such
as the Traveling Salesman Problem (single or multiple TSP), and the Vehicle
Routing Problem (VRP) dg¢ not have a scheduling component, In all of these
problems, times are assumed proportional to distances traveled, and therefore
do not have to be considered explicitly and separately in the formulation and
solution of the problem.

By contrast, in every dynamic vehicle routing situation, whether it be

time-constrained or not, the time dimension is essential. At a minimum, we

need to know the spatial location of all vehicles within our fleet at any
given point in time during their schedule, and particularly when new customer
or cargo requests or other information are made known. A fortiori, and in
more common situations, we need to keep track of how vehicle schedules and
scheduling options dynamically evolve in time.

(2) Problem may be open-ended

In contrast to a static situation, in which the duration of the routing
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process is more or less bounded or known in advance, the duration of such
process in a dynamic situation may neither be bounded, nor known. In fact, a
typical dynamic vehicle routing scenario is that of an open-ended process,
going on for an indefinite peried of time. An implication of this is that
whereas in a static problem one usually considers tours (vehicles return to
their depot), in a dynamic problem one considers (open) paths, Other
implications regard the types of objective functions that are relevant in a
dynamic routing problem (see also (9) below).

(3) Future information may be imprecise or unknown

In a static case there may be no "past", "present" or "future",
particularly if the problem has no scheduling component., But even if it has,
information about all problem inputs is assumed to be of the same quality,
irrespective of where within the schedule this input happens to be
{beginning, middle, or end). This is not the case in a dynamic problem, in
which information on any input is usually precise for events that happen in
real time, but more tentative for events that may occur in the future. As in
any real life situation, the future is almost never known with certainty in a
dynamic vehicle routing problem. Probabilistic information abeut the future
may be available (e.g., we may know the probability that a certain customer
will request service on a particular day), but in many cases even that type
of information may not exist {a taxicab company waiting for customers is a
typical example).

(4) Near—term events are more important

An implication of the previous point is that in terms of making decisions
in a dypamic vehicle routing situation, near—term events are more important
than longer-term ones, This is not the case in a static setting, where
because of uniformity of information quality and lack of input updates all
events {whether in the beginning, in the middle, or at the ead of a vehicle's
route) carry the same "weight". In dynamic routing, it would be unwise to
immediately commit vehicle resources (i.e., decide to assign a vehicle, or
make routing decisiocns) to requirements that will have to be satisfied way
inte the future, because other intermediate events may make such decisions
suboptimal, and because such future information may change anyway. Focusing
more on near-term events (of course without adopting a totally myopic policy)
is therefore an essential aspect of a dynamic vehicle routing problem.

(5) Information update mechanisms are essential

Virtually all inputs to a dynamic routing problem are subject to revision
at any moment during the execution of the route. For instance, a vehicle may
break down. A customer regquesting service may change the time he or she
wishes to be picked up, '"No-show" situations may occur. Due to

unpredictable weather conditions, a ship may not be able to arrive at a
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certain port as scheduled. And so on. It is therefore imperative that
information update mechanisms be an integral part of the algorithm structure
and input/output interface in a dynamic situation. Data structures and
database management techniques that help efficiently revise problem inputs as
well as efficiently figure out the consequences of such revisions (see also
{6) below) are central to a dynamic routing scheme. By contrast, in a static
scenario, the scope of such mechanisms is either nonexistent, or, at best,
tangential to the core of the problem (e.g., perform sensitivity analysis,
play "what if" games, etc.).

(6) Resequencing ant reassignment decisions may be warranted

In a dynamic vehicle routing situwation, the appearance of a new input may
render decisions already made before that input's appearance suboptimal (with
respect to a certain objective). This fact concerns both sequencing
decisions (decide sequence of stops to serve a given set of points) and
assignment decisions (allocate vehicles to demand points). Thus, the
appearance of a new input (such as 2 new customer request) may necessitate
either the resequencing of the stops of one (or more) vehicle(s), or the
reassignment of those vehicles to demands requesting service {or both).

Figures 1 and 2 help further illustrate this point. Euclidean space is

assumed in both cases. In Figure 1, a dial-a-ride vehicle starts from point

nyn

A to service customers 1 and 2 { a pickup point is denoted by a "+" and a
delivery point by a "-"). The objective is to minimize the total distance
traveled by the vehicle until the last customer is delivered. Figure 1{a)
shows the optimal route, If now customer 3 requests service — while the
vehicle is still at A (Fig. 1(b)), the new optimal route is shown in Figure
1{c). Notice that under the presence of customer 3, it is no leonger optimal
to adhere to the same sequence of pick ups and deliveries deemed optimal for
customers 1 and 2 alone. Put another way, if we were to keep the same
sequence and were simply to find the best insertion of customer 3 into the
previously optimal route, we would arrive at a suboptimal solution, shown in

Figure 1(d).

-30 O+3

+ | +2 +I1 +2

FIGURE 1 (a) & (b)
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Figure 2 illustrates our point in a reassignment situation., Figure 2(a)
shows the optimal allocation of two vehicles, vl and v2 to satisfy the demand
originating at point 1 (imagine that the vehicles are fire engines and point
- 2 ) " 2 0) 1 is a fire)., "Optimal™ here means minimizing the maximum distance traveled

by a vehicle, Under this assignment, vl is dispatched to 1 and v2 idles. If
A A now there is a second demand at point 2, the previous allocation is clearly
suboptimal, for if we were to adhere to it we would have to have v2 travel a
+ -2 -! -2 very long distance to go to point 2 (see Figure 2(b)). The optimal
allocation in this case is the one shown in Figure 2(c¢). (Note that exactly
FIGURE 1 (c) & {(d) £he same observations are true if the objective is to minimize the total
distance traveled by all vehicles).

4 gimilar argument can be made whenever an input disappears (for instance

t a request is cancelled, a customer is a no-show, etc). As before, the
deletion of an input will generally warrant a resequencing or a reassignment
consideration.

vl @ () (7) Faster computation times are necessary

The need to reoptimize rcutes and/or vehicle assignments on a continual

basis in real-time necessitates computation times faster than those necessary

in a static situation. In a static routing setting one may indeed afford the

| luxury of waiting for a few hours in order to get the output of the code
solving the problem at hand. In such a setting, the problem may be solved
exactly, and the code run in batch mode, perhaps overnight. This is not the

(b case in a dynamic routing situation, in which the dispatcher wishes to know
b

vl /D vz as soon as pessible {i.e., in a matter of minutes, not hours) what the
solution to a particular problem is in the presence of new information. The
dispatcher may alse want to run (again, in real-time) a few "what if"
scenarios before deciding on the final action to take. The usual implication

2 of this "running-time" comstraint is that rerouting and reassignment

decisions tend (by necessity) to be made on a heuristic and "locazl" fashion,

Fast heuristics such as insertion, k-interchange and other improvement

! routines lend themselves to such a scheme (see alse Section 3).
(8) Indefinite deferment mechanisms are essential
By indefinite deferment we mean the eventuality that the service of a
vl te) particular demand be postponed indefinitely because of that demand's
vz unfavorable geographical characteristics relative to other demands. An

example of indefinite deferment for the single-vehicle case is depicted in

Figure 3. As long as there are no time or priority constraints, and as long
as there are unserviced requests near the current location of the vehicle,
customer 1 (located far away from the central area) will always be scheduled

to be serviced last (objective is to minimize total distance traveled until

FIGURE 2 last customer 1s serviced).
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FIGURE 3

There are a variety of ways to alleviate this problem. Time constraints
(in the form of time windows for instance) can generally force the vehicle to
service a particular demand point on time, irrespective of that point's
geographical location. A nonlinear objective function that penalizes
excessive wait may also achieve the same goal (see alsc (9) below). Finally,
priority constraints such as for instance limiting the number of positicns
each demand point can be shifted (up or down} away from its First-Come,
First-Served {FCFS) position, can do the job as well (see Psaraftis {1980)),

(9) Objective function may be different

In a strict sense, the traditional "static" objectives of minimizing total
distance traveled, or maximum distance traveled, or the overall deration of
the schedule, may be meaningless in a dynamic setting., After all, if the
process is open-ended, the overall duration of the schedule will be unbounded
too. Measures of performance that have more meaning in a dynamic situation
are more “throughput" or "productivity" - related. For instance, in a
share-a-cab system we may wish to maximize the long-term average number of
serviced customers per vehicle hour. Unfortunately, such an objective
function does not always lend itself to algorithmic implementation, and one
typically ends up replacing it with a set of surrogate objectives, sometimes
identical, or closely related to the traditional static objectives, sometimes
more complicated. Such criteria are typically applied to parts of the
overall problem {decomposition by time or.by space).

Optimizing only over known inputs might be a reasonable way to proceed if
no information abeut future inputs is available. However, if some
information about future inputs is available, it would make sense if such
information is explicitly coansidered by the objective function, Since such

information is usually vague, algorithms typically devise surrogate criteria

—— e e ———— -
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{sometimes ncnlinear) which attempt to "predict" future system workload (see
also Wilson and Weissberg (1976}, Jaw et al. (1986}).

Nonlinear chjective functions are also used to induce the algorithm to
avoid certain undesirable phenomena such as indefinite deferment in the
absence of "hard" time constraints (see Tharakan and Psaraftis (1980)).
Queueing considerations may also warrant a nonlinear objective treatment (see
Psaraftis et al. {1985) and (12) below).

(10) Time constraints may be different

The main difference between static and dynamic vehicle routing as far as
time constraints are concerned is that in dynamic¢ routing inputs such as
earliest pickup (or delivery) times or (especially) latest pickup (or
delivery) times tend to be softer than in a static situation. A time
constraint is "soft" (as opposed to "hard") not only if it can be violated at
a penalty - and this can happen in a static problem too — but alse if it is
subject te update and eventual revision. In the eyes of the dispatcher, a
customer—imposed latest delivery time is essentially a soft constraint (even
if in the eyes of the customer it is a hard one). This is so because denying
service to that customer if that constraint cannot be met is usually a less
viable alternative, If a "hard" deadline makes a routing problem infeasible,
it is far better to renegotiate that deadline so as to make it feasible, than
to declare infeasibility and quit. However, a deadline that is relaxed is,
by defirnition, a "soft" constraint. Of course, some of these constraints may
indeed be hard (or harder than others). However, in dynamic routing we would
expect at least some of these constraints to be soft.

(11) Flexibility to vary vehicle fleet size is lower

Tn theory, another alternative to demying service to a customer if a time
constraint cannot be met is to add an additional vehiele to serve that
customer, at a cost. However, this proposition may not necessarily be
viable in dynamic vehicle routing, because it may not be possible to have
access to backup vehicle resources in real time. In a static situation, the
time gap between execution of the algorithm and execution of the route is
usually long encugh to aliow such determination to be made. Such a high
flexibility does not generally exist in dynamic routing. Implications: if
vehicle resources are scarce, some customers will receive lover quality of
service (their due dates will be shifted, etc.) This may also result in

queueing phenomena, which we discuss next.

(12) Queueing considerations may become important

A dynamic vehicle routing system may at times become saturated (or

congested), This will happen if the rate of customer demand exceeds a
certain threshold, beyond which the system simply cannot handle all of the
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requests without creating excessive delays. In this case, any algorithm
which tries to make assignment and routing decisions according to classical
static surrogate criteria is bound to produce meaningless results.
Unfortunately, whereas queueing theory and vehicle routing are two especially
rich disciplines, very little is known about their interface. Under the
current state of the art, including queueing considerations in vehicle
routing is limited to empirical modeling (see also the MORSS algorithm
described in Section 3 and the discussion of the Dynamic Traveling Salesman
Problem introduced in Section 4).

It is clear that many of the above points are interrelated. For instance,
(4) is an implication of {3), (6) and (7) are generally in conflict with each
other, (9) and (10) may be used to take care of (8), (10) is due, in part, to
(11), and (9) is true in part because eof (12). Of course, specific dynamic

environments vary, in general, with respect to each of these 12 points.

3. DYNAMIC VERICLE ROUTING: SOLUTION METHODS

In this section we first review some generic design features that a

dynamic vehicle routing procedure should possess in order to be useful in
practice. We then discuss the adaptability of static approaches to a dynamic
setting. We ccenclude by presenting the MORSS procedure developed by the
author and his colleagues for the dynamic routing of cargo ships in a
mobilization situation. Some of the concepts below draw from Psaraftis et
al. (1985).

Design Features

In a generic sense, a dynamic vehicle routing procedure should possess, by
design, the following features:

(1) It is obvious that such a procedure should be interactive. One should
always have the "human in the loop" and enable him/her to override the
computer at will. Various options should be designed, ranging from a
completely "manual” approach where all major allocation (and possibly
routing) decisions are made by the human operator, to more sophisticated
modes where the computer deals with more difficult problems (e.g., routing}
but still allows user discretion for "key" decisions, A fully automated
mode, in which incoming data (e.g., new customer requests) are directly fed
into the computer (say, by telephone, or by entering data in "checkpoint
stations" in the area of service) can also be considered, so long as the
human has the capability to override the machine in case an "unpredictable"
situation occurs.

(2) The procedure should have a "restart" capability, that is, should be
able to efficiently update routes and schedules at any time within the

execution of a plan, without compromising "key decisions" already made. For
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instance, if a certain cargo is en route from its origin to its destinmation

at the time of the update, it would be nonsensical to have the procedure

recommend that the cargo be reassigned on a different vehicle. On the other

hand, if such a determination is made before that cargo is picked up, the

reassignment recommendation is potentially implementable. New demands should

This means that the
should be

be able to be inserted quickly into existing schedules.
consequences of such an insertion (or of all potential insertions)
able to be accounted for quickly. Efficient list processing techniques
should be implemented for fast database manipulations.

(3) The procedure should be hierarchically designed, that is, allow the
" gross feasibility

user to start the decision making process with "first-cut
analyses (possibly in several levels of aggregation) and only then proceed
with detailed scheduling. Such a feature is considered important because a
"quick and dirty" feasibility analysis may establish that, say, some due
dates are infeasible, and hence allow the user to inquire for adjustments
before further decisions are made.

(4) Finally (and perhaps obviously) we consider it important that the
procedure be user—friendly. This is much more important in a dynamic setting
than it is in a static one. In particular graphics aids are significant
features that can enhance the efficiency of the man-machine interaction.

Tt is clear from the above list that in a dynamic vehicle routing
procedure, information management and user interface issues become probably
even more important than the theoretical performance and efficiency of the
routing/scheduling (or, decision) module of the procedure. This module may
still be considered to be the "core" of the overall procedure. However, in
light of the discussion thus far, it is important to conclude that an
efficient dynamic routing procedure implies much more than just an efficient
core module. Actually, the core module itself must be designed in such a way
that the above features can be easily implemented. This may have profound
implications on the methodology used in the "core" module.

Adaptations of Static Approaches

Can a static routing approach, after suitable modifications, be

efficiently used in a dynamic setting? The answer of course depends on the
specific approach and setting. ‘

A successful real-time implementation of a static approach has been
reported in Bell et al. €1983), for the routing and scheduling a fleet of
vehicles delivering a bulk product stored at a central depot. The routing
"eore" of the procedure is the static algorithm of Fisher et al. (1982},
which is based on a mixed integer programming formulation of the problem and
a solution using Lagrangian relaxation and a multiplier ad justment method.

The core algorithm first heuristically generates a menu of possible vehicle
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routes taking intoc account the geographical location of customers and the
amounts of demands and truckloads. A set packing problem is then formulated
50 as to select from this menu of routes the subset that would actually be
driven, specifying the time each route should start, the vehicle to be used,
and the amount to be delivered to each customer. A typical scenario is for
this overall system to be run once a day, so as to determine the schedules
for the next two to five days. A separate "schedule change™ module takes
care of updates in input data that may eccur in real-time.

In general, and in all fairness to a specific static vehicle routing
algorithm, it would be unreasonable to expect that the procedure, as it
stands, can handle any dynamic situation. In many cases, the algerithm would
have to undergo a significant degree of redesign, most of it heuristic, to be
tailored to the nature of the dynamic scenario,

There are generally two ways to adapt a static algorithm to a dynamic
case. The first is to rerun the procedure virtually from scratch each time a
(significant) revision of the input occurs (say, a new customer appears, or
another one cancels his request, or a vehicle breaks down, etc.,). This would
involve generating a new set of routes at each input update, while
guaranteeing that decisions already made (e.g., allocation of cargoes already
enroute} are not compromised. Both steps would involve "freezing" many of
the variables of the problem to values determined at previous iteratioms.
Running a static algorithm in such a way could present several nontrivial
challenges, one of which would be how to cope with the excessive
computational hurden of rerunning the algorithm over and over apain while
results are needed in real-time,

An alternative and more commonly used adaptation would be to handle
dynamic input updates via a series of "local" operations, applied via the
execution of an insertion heuristic {possibly followed by an interchange
heuristic), after the static core algorithm is run. This would involve
running the static algorithm just to initialize the process (say, once every
day), and rely on "local” operations for all subsequent input updates. This
author believes that this approach would work reasonably well if both the
time horizon of the initial input is relatively long and subsequent input
updates are infrequent (that is, if the overall problem is closer to static
than dynamic). If the time horizon of the initial input is short or if
subsequent input updates are numerous, the overall schedule would be less
influenced by its initial solution and more by the subsequent local
improvements. Such a scenario would drastically reduce the role of the
static core in a dynamic situation, and shift the emphasis to the efficiency
of the local operation method.

Local operations provide a reasonable way to handle dynamic input updates,
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their principal advantage being execution speed. The fastest local operation
method is an insertion approach, in which a new request is inserted within
the current schedule, without perturbing the sequence of visits already
planned. An insertion approach can also work in reverse, that is, whenever a
request is deleted from the list for some reason (e.g., a cancellation).
However, as mentioned in the previous section, the main drawback of the
insertion method is that it cannot take care of the need of possible
resequencing or reassignment operations. Among the various insertion methods
we refer to the work of Wilson et ai. (1971, 1976, 1977) that was
specifically developed for the dynamic version of the dial-a-ride problem,
and its more sophisticated variant for the advance request case with time
windows (Jaw et al. 1986), Both algorithms keep track of how much (up or
down the schedule) the service time of a customer can be shifted so that
feasibility is maintained. The second reference can be readily implemented
in a "mixed-demand" scenario.

Interchange methods can be used after the insertion to further improve the
set of routes and schedules. Such methods are based on the concept of
"¢-interchange" made widely known by Lin (1965) and by Lin and Kernighan
(1973} for the TSP (plus, their extensions for the multiple vehicle case).
Resequencing and reassignment can be effectively performed by such methods,
some variants of which are particularly powerful (e.g., for the TSP the k = 3
case is much more powerful than the k = 2 case, and the k = & case is only
marginally better than the k = 3 case). Unfortunately, a drawback of such
methods is that they tend to become computaticnally expensive as k increases.
Also, computational effort has to be spent to check whether the improved
route maintains feasibility. Sophisticated adaprations of the interchange
concept that do not result in a substantial CPU time increase {in an
order-of-magnitude sense) to check feasibility are due to Psaraftis (1983)
for the dial-a-ride problem and Savelsbergh (1985) for the time-window TSP,
Also, we note the approach of Or(1976) that looks only at a subset of
possible interchanges and ignores those that are unlikely te result in an
improvement. All of the above methods can be adapted in a dynamic situation.

The MORSS Algorithm

The remainder of this section is devoted to giving an overview of MORSS, a
dynamic vehicle routing algorithm developed by this auther, Jim Orlin, and
their colleagues to assist schedulers of the U.S, Military Sealift Command
(MSC) to route cargo ships in an emergency situation. Complete details on
the MSC problem and MORSS (which stands for MIT Ocean Routing and Scheduling
System) can be found in Psaraftis et al. (1985).

The MSC is the agency responsible for providing sealift capability for the

Department of Defense. To do this, it provides peacetime logistical sealift
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support of U.S. military forces worldwide, it develops contingency plans for
the expansion of the peacetime sealift cargo fleet in case a military
emergency occurs, and it has the operational contrel of this expanded fleet
in mobilization situations.

Under conditions of military emergency, the objective of the MSC is to
allocate cargo ships under its control (which can be as many as 1,000 in
serious situations) to cargoes {(whose number can be several thousands) so as
to ensure that all cargoes, dry and liguid, arrive at their destinations as
planned. Constraints that have to be satisfied include time windows for the
cargoes, ship capacity, and cargo/ship/port compatibility. In addition, the
scheduler has to allocate ships to cargoes so that three criteria are
satisfied: First, cargees should not be delivered (toc) late. Second, ship
utilization should be high. And third, port congesticn should be aveided.
The problem is dynamic ir nature, as in a mobilization situation anything can
change in real time, After extensive discussion with M3C personnel, an
abstract model was developed for this problem. A simplified characterization
of the input is the following (see Psarafris et al. (1985) for more details).
For each cargo:

POE : Port of embarkation (origin)

POD : Port of debarkaticn (destinaticn)

EPT : Earliest pickup time at POE (hard constraint)

EDT : Farliest delivery time at POD (hard constraint)
LPT : Latest delivery time at POD (soft constraint)
WEIGHT: Weight

V0L : Volume

SQFT : Deck surface area

For each ship:

LOC : Initial geographical location at time zero

W : Weight capacity

v : Volume capacity

S : Deck area capacity

SPEED: Speed

LOAD : Cargo loading/unleading rate

D : Draft

For each port:

DRAFT: Draft

THRU : Throughput characteristics of berths and terminals
DIST : Distances to all other ports and ship initial locations.

MORSS is based on the "rolling horizon" principle. In Figure 4, t 4s
the "current time", that is, the time at the kth iteration of the procgdure.

At t | MORSS considers only those known cargoes whose EPT's are between ty

k
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and t 4L, where L, the length of the rolling horizon, is ancther user input
(say, L = 2 weeks), It then makes a tentative assignment of those cargoes to
eligible ships (more on how assignments are made shortliy). However, only
cargoes within the "front end" of L are considered for permanent assignment.
Those are those whose EPT's fall between tk and t + alL, where a is another
user input between 0 and 1. Thus, if L = 2 weeks and a = 0.5, MORSS will
"Mook" at two weeks of cargo data into the future, but will commit to assign
cargoes only within the first week, In such a fashien, MCRSS places less
(but, still, some) emphasis cn the less reliable information on future cargo

movements, since such information is more likely to change as time goes on.

e

Yt time
] 1 L -
¥ L T T -
by
L
FIGURE 4

Iteration k+l will move the "current time" to t (see Figure &), which

is equal to the time a significant input update ha:+%o be made (say, new
cargo movement requirements are made known), or to the lowest EPT of all yet
unassigned cargoes, whichever of the two is the earliest.
More formally, MORSS works as follows:
STEP O Tnitialize locations of available ships.
Initialize "master list' of unassigned cargoes.
Select length L of individual time horizons.
Select fractioma { O < a < 1).
Set k =1, tl = 0.
STEP 1 : Set up next horizon (tk, tk+L)‘
Form list of cargoes eligible for assignment (all cargoes in
master list whose EPT's are between tk and tk+L)_
STEP 2 : Calculate assignment utilities for all eligible cargo/ship
pairs (see Note (1) below).
STEP 3 : Form and optimize a tramsportation network using assignment
utilities as arc costs. Resulting assignment forms the

“tentative assignment' for (tk' tk+L) (see Note (2) below).
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STEP 4 : Return to master list of unassigned cargoes (a) all unassigned
cargoes by Step 3, (b) all tentatively assigned cargoes whose
EPT's are between t 4+ al and t + L and (c) all tentatively
assigned cargoes which "interact unfavorably” with one
another or with cargoes assigned at previous iterations
(see Note (3) below).

Make all other cargo/ship assignments in (tk, t. 4+ al)
"permanent”. Remove permanently assigned cargoes from master
list of unassigned cargoes.

STEP 5 :  "Roll" time horizon. Set tk+l = min (lowest EPT of cargoes in
master list of unassigned cargoes, time "significant" input
update occurs). Update ship locations at tk+l'

Set k = k+l and go to Step 1.

The above sequence of steps refers only to the "core" of MORSS, that is,
does not include descriptions of preprocessing and postprocessing modules.
Preprocessing modules conduct gross feasibility analyses, and postprocessing
modules perform local improvements to the schedules produced up to Step 5.
Also in Steps 3 and 4 the human scheduler can override the procedure and
"force" it to make assignments of his/her choice.

The following notes provide additjonal details on the algorithm:

Note (1): The "utility" uij of assigning ship i to cargo j (Step 2) is
defined by:

voo=u (1) +u (2) +u, {3) +u (4.
ij ij ij ij ij

(a) Ui,(l) measures the assignment's effect on the delivery time of cargoe
j and by ship i. Dropping subscripts i and j and defining t as the tardiness
of cargo j ( = arrival time - LDT if > O, zero otherwise), and V | ¥ , €
and b as user-specified (and, generally, cargo-dependent) parame?é?s, gax °

"reasonable” functional expression for u (1) is
1]

b
)e—z(t/ta)

uij(l) =V + (v -V 1

min max min
The motivation of this functional form, which is typically bell-shaped
with the urility very close to V x if t is small and then dropping to a
[t

Iz
level very close to V. . if t increases {u (1) =V + 0.135¢V -V )
min ij min max min
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for t = CO, independent of b), -is the following. If the cargo is deiivered
early or on time ( t = 0), its utility is maximum (V 3}, If ir is oniy a
few days late (say, 1 or 2 days after its LDT), we aggﬁme that its value is
close to ¥ | but a bit lower, If it is more than a few days late, we
assume itsmﬁﬁility decreases rapidly with tardiness, until it reaches a
"sottom” value (V ) which is practically independent of t, if t is large
("if it's deliverednafter two weeks, it might as well be delivered after a
month™). We have arrived at this form after discussions with MSC personnel,
however we have also experimented with other, less CPU-intensive formulas
that essentially exhibit the same features (see Psaraftis et al. (1983) for
more details).

(b) u (2) measures the assignment's effect on the delivery times of all
other caréoes already assigned to ship i. It does this by calculating the
net change (if any) of the utilities of all such cargoes. These are computed
according to the same formula suggested above (1).

(e} U, (3) measures the assignments effect on the "efficiency" of use of
ship i, Such an efficiency has two dimensions, First, we would like the
ship to sail as full as possible. Second, we would like to keep some slack
in the ship's schedule, sc that additional cargoes can be carried by the ship
in future iterations. Again dropping subscripts i and j and defining as C
the ship's capacity, as R the residual capacity of the ship after the cargo
has been picked up {C and R are expressed in weight, volume or area units
depending on which of the three capacities is binding), and as F the slack in

the ship's schedule averaged over all future stops, a reasonable formula for

Uij(S) is:

< d
W (3) =V E—Z(R/C) {1-fF/L) &)
ij s

where VS c,d and f are user-specified (and, generally, ship-dependent}
parameters (c, 4 »0, Q< £< 1),

The motivation for this function (which is two-dimensionally bell-shaped)
is that the utility reaches its maximum value (V ) if R = O (ship is already
full, so ship utilization is maximum), independent of the slack in the ship's
schedule. Tt drops to lower values (for F = constant) if R increases. At
the same time, the utility is a non-decreasing function of F, for R =
constant, for, everything else being equal, one would prefer more flexibility
in a ship's schedule than less. See Psarafris et al. (1985) for more
details.

(d) Finally, ui,(h) measures the assignment's effect on the system's port

resources, as manifested by the increase in port queueing and congestion
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caused by ship i's visit to the POE and POD of cargo j. Calculating queueing i
delays in this problem is very complicated. Instead, we chose to use the
following empirical formula:

i if carge j's POE/POD coincide with ports

P that have to be visited anyway, )
uij(ﬁ) = .
VPE_Z(mN/P) otherwise.

In ¢3), N is the anticipated number of visits in cargo j's port during the
current time horizen (by all ships), P is the throughput capacity of the port
(expressed in equivalent number of visits), and V | m, and 1 are non-negative
user-specified parameters. According to (3), u, (4) drops from its maximum
vaiue V to gzero if cargo j's port is not in th; previous schedule and if N
is highp(see Psaraftis et al. (1985) for more details).

It is obvious that finding an effective set of values for the numerous
user-specified parameters used in (1}, (2) and (3) is in itself an extremely
difficult (and probably data-dependent) task, We have carried out such a
calibration to some extent, many times assigning "reasonable' but essentially
arbitrary values to these parameters. More calibration weould be carried out
in a possible implementation phase (see also at the end of this section}.

Note (2): The problem that determines the maximum utility "tentative

assignment” (Step 3) is formulated as follows:

Maximize I I u,,.
i o5 i3
s.t. b x,, <1 for all j (4)
i iy -
Ex,, <K for all i
i -
x,, >0 for all i and j
ij —
where xi' = 1 if ship i is assigned to cargo j and zerc otherwise. In (4), X

is a user-specified integer (usually no more than 2 or 3). This formulation
forbids more than X cargoes to be simultaneously assigned to the same ship
(per iteration). This "artificial" constraint has been impesed so that one
can justify adding all utilities in the objective function and limit the
chance of "bad" cargo interactions. Note also that (4) does mot explicitly
incorporate ship capacity constraints. These constraints come into play in
Step 4 of the procedure (moving from tentative to permanent assignment - see
also Note (3)).

Note {3): It is clear that the "true" utility of a cargo-ship assignment
is directly dependent upon the assignment of other cargoes to the same ship.
This nonlinearity is patently neglected in our formulation (4) and may cause
significant errors in case multiple cargoes are selected to be assigned to

the same ship (put in another way, if each of cargoes 1 and 2 alone is a good
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assignment for ship 3, it does not necessarily mean that both of them
together are). Setting a low value for K limits (but cannot eliminate) the
chance of unfavorable cargo interactions. However, should such interactions
occur, some of the cargo assignments will have to be cancelled, and the
corresponding cargoes will have to return to the pool of unassigned cargoes
(see also example below).

Also when a permanent assignment is made, it may happen that the cargo is
too large for the available residual ship capacity. In this case the cargoe
is split. As much as possible of it goes on the ship, and the remaining
amount is returned to the pool of unassigned cargoes for the next iteration.

We now illustrate the MORSS approach by a rather rudimentary example.
Figure 5 shows two ships (81 and S2) and four cargoes (l to 4, pluses are
origing, minuses are destinations) in a Fuclidean geographical area. Sailing
times (days) are also shown in the figure. Assume that cargoes 1 to 3 are
known at time t=0, but that cargo 4 appears cnly at time t=12, FEPT's, EDT's

and LDT's are given as follows:

Cargo EPT EDT LDT
1 0 0 12
2 1 21
3 0 0 22
& 12 12 32
S2

T+ +2,+4

10

FIGURE 5
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For the sake of the example, assume that no capacity constraints exist, and
that the only relevant components of the utility are the delay-related ones,
that igs, the ones given by formula (1) shown earlier. Also assume the
following values for MORSS parameters: L =5, a =0.5, V. = -0, ¥ =1, t
=5 b=2 and X = 2. e e 0

Let us now see how MORSS behaves. The first time horizon (k = 1) is the
interval (0, 5), which includes cargoes 1 to 3 (cargo 4 is not known at that
time)}. MORSS then calculates utilities for all eligible cargo/ship pairs,

It is straightforward to check that these are as follows:
Ship 1

Cargo 1: Tardiness = 0, Utility =1

Cargo 2: Tardiness = 0, Utility =1

Cargo 3: Tardiness = 7, Utility = 0.02

Ship 2

Cargo 1: Tardiness = 10, Utility = 0.00

Cargo 2: Tardiness = 1, Utility = 0.923

Cargo 3: Tardiness = 0, Utrility = 1.

Notice the relatively small decrease in utility if the tardiness is small
(cargo 2 by ship 2), and the precipitous utility drop if the tardiness
increases considerably (cargo 3 by ship 1 and carge 1 by ship 2).

The maximization of total utility via transportation problem (4) results
in the following tentative assignment:

Ship 1: Gets cargoes 1 and 2 (utility = 2},
Ship 2: Gets cargo 3 (utility = 1).

Notite however that the simultanecus assignment of both cargoes 1 and 2 on
ship 1 actually results in a lower total utility than the sum of individual
utilities, because cargoes L and 2 interact unfavorably with one ancther (see
Figure 5). Thus, MORSS will have to return either cargo 1, or cargo 2, to
the pool of unassigned cargoes.

Ties can be broken arbitarily, or by using some secondary criteria. One
of such criteria is to cancel the assignments of cargoes with higher EPT
values. If this is so, the assignment of carge 2 is cancelled, and MORSS
will complete iteration 1 by permanently assigning cargo 1 to ship 1 and
carge 3 to ship 2. Cargo 2 is still unassigned.

Tteration 2 is for horizon interval (1, 6). MORSS here assigns cargo 2 to
ship 2, because this is clearly the maximum utility assignment, given the
previcus assignments. The resulting schedules are established as follows:
Ship 1t Pick up cargo 1 on day 2, deliver it on day 12,

Ship 2: Pick up cargo 3 on day 2, pick up carge 2 on day 12,

deliver these cargoes on day 22.
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The third iteration of MORSS will occur at time t = 12, when cargo &
appears, At that time, ship l is just delivering cargo 1, and ship 2 is just
picking up cargo 2. Despite the fact that the appearance of cargo 4
coincides exactly (location- and time-wise) with ship 2, it turns out that it
is better in terms of utility to assign cargo 4 to ship 1, and let ship 2
proceed with the deliveries of cargoes 2 and 3. The rest of the schedules
are thus established as follows:

Ship 1: Pick up cargo 4 on day 22, deliver it on day 32,
Ship 2: Pick uvp cargo 2 on day 12, deliver cargoes 2 and 3 on day 22,

It can be seen from the above that making simultaneous cargo-to-ship
assignments is advantagecus from a computational viewpoint, (vis-a-vis a
one-by-one sequential assignment procedure), but that care should be taken to
avoid unfaverable cargo interactions. Again, since K is low, such bad
interactions are expected to occur relatively rarely.

There has been more refinement, testing, calibration, and computational
experience with MORS8S. The procedure has been coded in Pascal, and developed
on both an IBM mainframe system (CMS) and on an Apollo workstation. Details
can be found in Psaraftis et al. (1985) and in forthcoming publications (in
preparation). The MSC has been very satisfied with the structure and
generic features of the procedure, and is planning to proceed with an
implementation phase in the foreseeable future. This implementation phase
would link MORSS with "real" databases on ships, cargoes and ports, and would
typically use MORSS for simulation and training purposes, so as to be
prepared for the (undesirable) case in which a real mobilization situation
occurs. Of course, many details on the actual operation of MORSS (such as,
for instance, the time lag between execution of the algorithm and
implementation of scheduling decisions, or how frequently the solution will
be updated, or the degree of aggregation of the solution, or what kind of
computer system would be used, etc.), will be determined in the

implementation phase,

4, DIRECTIONS FOR FURTHER RESEARCH

As mentioned earlier, the state-of-the-art in dynamic vehicle routing

methodologies is nowhere near that of the equivalent static case., This paper
has attempted to put dynamic vehicle routing into perspective within the
broader area of vehicle routing, as well as identify methodological and
algorithmic design issues that are likely to be important in the dynamic
case.

Methodologically, some effort should be spent to first develop a taxonomy
of dynamic vehicle routing problems that parallels the traditional static

classification structure. On this score, this author believes that one
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should really start from scratch, for there isn't that much there to begin
with. For instance, the classical (static) TSP is considered to be the
"archetypal™ (static) vehicle routing problem, in the sense that most other
vehicle routing problems are its extensicns and generalizations. What is
known about the equivalent "dynamic" TSP? To this author's knowledge, the
dynamic TSP (DTSP) is a problem that has not even been explicitly defined,
let alone investigated or solved. We shall give one definition of the DTSP
below, so as to hopefully stimulate the development of such a dynamic vehicle
routing taxonomy, and the subsequent buildup of a methodological base in this
area.

The Dynamic Traveling Salesman Problem (DTSP)

Let G be a complete graph of n nodes. Demands for service are

independently generated at each node of G according to a Poisson process of
parameter ). These demands are to be serviced by a salesman who takes a
(known) time of ti' to travel from node i to node j of G, and spends a
(known) time of tO servicing each demand (cn location). If at time zero the
salesman is at node 1, what should his “optimal" routing policy be?
"Optimal” here may be with respect to a number of objectives (as will be
further clarified below)}.

With the possible exception of the Probabilistic Traveling Salesman
Problem {see also below), we are aware of no work by others on problems
similar to the DTSP, as defined above. The work of this author is no
exception, and he claims no special expertise on this problem, However, a
very cursory investigation can reveal a number of interesting issues:

(a) As in dynamic routing in communications networks (see chapter 5 of
Bertsekas and Gallager (1987)), there are two main classes of performance
measures that are affected by routing decisions in this problem: (i)
throughput measures and (ii) delay measures. According to {i), we may want
to maximize the average expected number of demands serviced per unit time,
that is, the limit, as T goes to infinity, of the ratio of the expected
number of demands serviced within T, divided by T. According to (ii}, we may
want to minimize the average, over all demands, expected time from the
appearance of a demand until its service is completed.

(b) FEach of the two measures defined above is relevant or irrelevant, in
the following sense. If the demand rate X is "relatively low", then the
vehicle will be able to keep up with the demand, and the throughput will be
equal to nj), irrespective of the routing policy. However, the average
expected delay will definitely depend on the routing policy. Figure 6
further clarifies this point (Fuclidean travel times are assumed and shown or
the network links—in hours). Assume that tO = 1 hour and that » = 0.01
demands/heur, Then it is clear that both the policy "service the (probably
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sole) demand as soon as it appears and then wait" and the policy "service
demands as-you-go, by performing tour 1-2-3-4-1 ad infinitum" achieve a
throughput of 0.04 demand services/hour (other routing policies can exhibit
the same throughput as well). However, in terms of average expected delay,
the above two policies differ. This delay is approximately equal to (1/4) x
(1l + 2+ 2,4+ 2) = 1.85 hours for the first policy (there are 4
equal-chance possibilities for the location of the next demand, relative to
the current location of the vehicle, and the service time is one hour in all
cases). For the second policy, the delay is approximately equal to 3 hours
(2 hours average waiting time until vehicle comes to the demand point plus
one hour service time), In the above calculations the probability of more

than one active demand was ignored.

1 | 2
Q 5
t.4
1.4
| |
o O
4 3
FIGURE 6

(c) Things become more complicated if A takes on higher values. In this
case, not only will the delay depend on the routing policy (as before), but
the vehicle may not be able to cope with trhe demand, that is, the throughput
may be forced to be lower than nk . TIn this case, the queue of demands will
become unstable, and then the option will be for customers to either suffer
an infinite delay, or be denied service (rejected from the system). It is
important to realize that whereas for very high values of A no routing policy
will be able to cope with the demand, for intermediate values of » it is
precisely the routing policy which will determine whether the system can
handle the demand {and result in realistic delay values), or cannot handle it
(and result in infinite delays). For instance, with respect to the previous
example (Figure 6), and if x is high, the policy "perform tour 1-2-3-4-1 ad
infinitum, servicing only one demand at a time" achieves a throughput of 4/8
= 0.5 demand services/hour. However, if this policy is applied via tour

1-3-4-2-1, the throughput drops to 4/8.8 = 0.45 demand service/hour. Notice



246 H.N. Psaraftis

that both throughputs are independent of 3 and much lower than the
theoretical maximum value of 4, if ) is high. In both cases, delays are
expected to be infinite (if demands are nct rejected). What happers however,
if 3 is in the vicinity of 0.1 Jemands/hour? It seems that the former
policy is superior to the latter, because of the higher throughput. Does
this mean that the optimal policy if X is very high is always to perform the
optimal TSP tour?

(d) The other side of the coin is the following. If ) is low, it may
make sense for the vehicle to move to a strategically located node (such as
the graph's median, for instance), in anticipation of the next demand. To
our knowledge, this issue has been addressed in the context of facility
location in a congested network (see Berman et al. (1985) and Chiu et al.
(1985)). It would seem that if ) is extremely low and if the objective is to
minimize average expected delay, the DTSP resembles the l-median problem,
However, and in contrast to the locational problems examined in the above two
references, in the DTSP the server is not restricted to return to a
prespecified node after the service of & given demand. Further research is
necessary to explore the relationship between these two classes of problems
(especially for intermediate values of } ).

Several other variants of the DTSP can be considered. For instance, the
graph can be incomplete, symmetric, or Euclidean. Morever, each node can
have its own Poisson parameter ) . Actually, the demand generation process
does not have to be Poisson. '

As stated above, the closest problem to the DTSP that comes te mind is the
Probabilistic Traveling Salesman Problem (PTSP) (the reader is referred to
Jaillet (1985) and to the paper by Jaillet and Odoni in this volume). In
the PTSP, a demand at each node ocecurs {with probability p), or does not
occcur {with probability 1-p) during a given day. The PTSP calls for the
construction ¢f a route R through all of the nodes so that the expected
travel time of the actual route that will be traveled is minimized. The
convention here is that the actual route will be based on R so that nodes
that have no demand on a particular day will simply be skipped.

Note that for all the resemblance between DISP and PTSP, the PTSP is
really a static problem, for the determination of the optimal R has to be
made before actual dispatching of the salesman, even though the actual route
to be traveled depends on which {if any) of the demands is actually "active"
that day. By contrast, in the DTSP the salesman's decisions have to be based
on the current, and, generally, on the probable future states of the system
as well.

How can this basic problem be solved? Uader what circumstances is a

myopic policy (optimize over known demands only) cptimal? What happens if
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service time is zero? Does it make sense to let demands accumulate before
the vehicle departs from a node? And so on, Answers to these (and similar)
questions would increase our knowledge about dynamic vehicle routing
problems, and might motivate further work on more realistic (and more

difficult) variants.
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