
Green Logistics for Surface Intermodal Transport

Harilaos N. Psaraftis Laboratory for Maritime Transport National Technical University of Athens Greece

Outline

- Background
- Measures to reduce emissions
- Green Logistics: issues and tradeoffs
- Some simple models and examples
- Conclusions

1

Main references

- Various projects on emissions in last 3 years (mostly maritime mode)
- New EU project "SuperGreen"
- Various recent developments

What is green logistics?

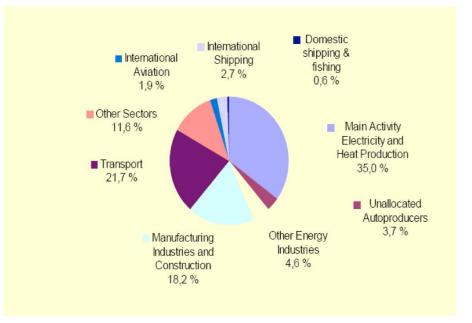
- An attempt to attain an acceptable environmental performance of the intermodal supply chain, while at the same time respecting traditional economic performance criteria.
- The concept of "Green Corridors" is being analyzed in many circles, notably in Europe, as flows of cargoes that achieve a desirable environmental performance, while at the same time being efficient logistics-wise.

1

Primary focus

- "Good environmental performance" $\dots \rightarrow$
- "Acceptable level of emissions"
- Further focus: GHG emissions
- [there are certainly additional environmental attributes of transport that create external costs, such as noise, hazardous substances, oil spills, ballast water, residues, garbage, etc]

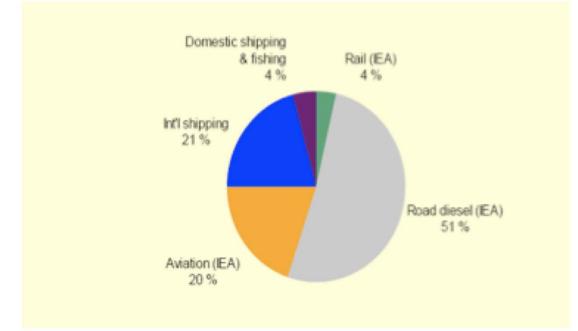
Types of emissions



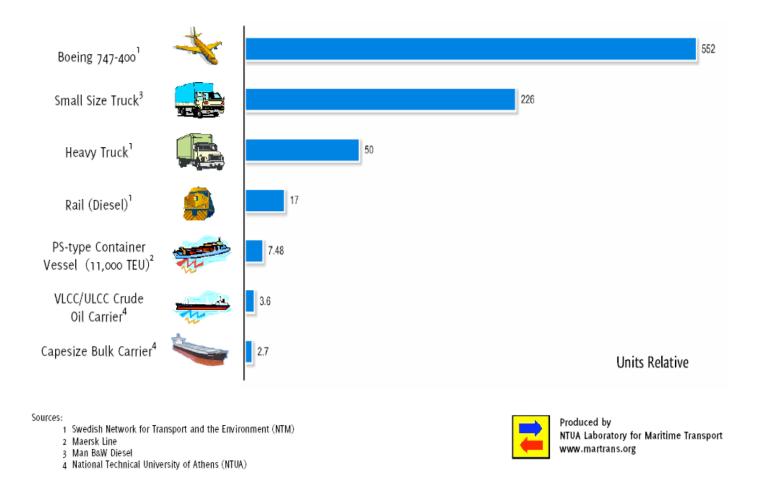
- Green House Gases-GHGs (mainly CO2, but also CH4 and others)
- Non-GHG (mainly SO2, but also NOx and others)
- P.M., etc

Share of global GHG emissions

Data: International Shipping: This study. Other IEA. Reference year: 2005



Comparison among modes

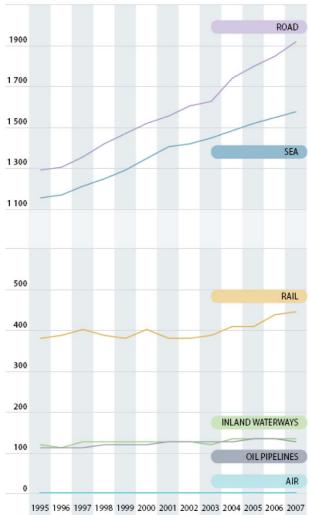

Source: Marintek

COMPARISON OF CO2 EMISSIONS AMONG TRANSPORT MODES

(grams per tonne-kilometer)

Many stakeholders involved

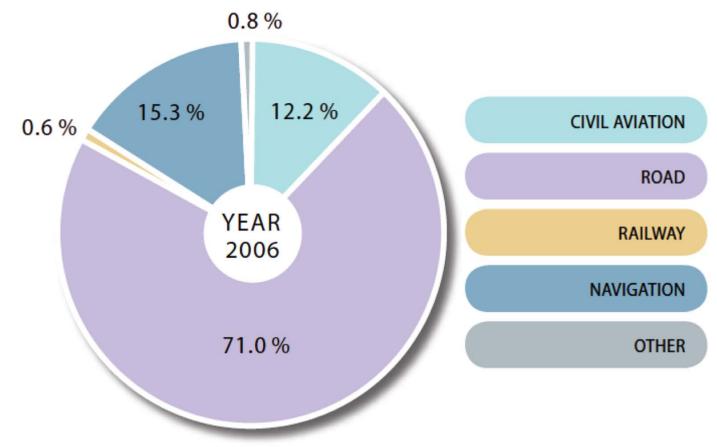
- transport operators
- terminal operators including ports
- infrastructure operators
- cargo owners (shippers)
- industry/consultants
- non Governmental Organisations (NGOs)
- environmental organisations
- authorities responsible for social and spatial planning
- R&D organisations and universities



EU surface modes growth

EU-27 Performance by Mode for Freight Transport – 1995-2007

billion tonne-kilometres



- Road
- Rail
- Sea
- Inland Navigation


CO₂ emissions shares (source: Eurostat)

GHG emissions growth per sector

In Europe:

Freight Transport Logistics Action Plan (2007)

- Green transport corridors for freight.
- Green Corridors should in all ways be environmentally friendly, safe and efficient.
- Emissions, internal as well as external costs should be considered.

What is a green corridor?

EU Commission:

Green Corridors are a European concept denoting long-distance freight transport corridors where advanced technology and co-modality are used to achieve energy efficiency and reduce environmental impact.

What is a green corridor?

Definition by the Swedish Ministry:
A green transport corridor is characterised by:

Sustainable logistic solutions

□ Integrated logistic concepts with utilisation of comodality

□ A harmonised system of rules

□ National/international goods traffic on long transport stretches

□ Effective and strategically placed transshipment points and infrastructure

A platform for development and demonstration of innovative logistic solutions

Measures contemplated

Technological

- More efficient (energy-saving) engines and propulsion
- □ More efficient vehicle designs
- □ Cleaner fuels (low sulphur content)
- □ Alternative fuels (fuel cells, biofuels, etc)
- Devices to trap exhaust emissions (scrubbers, etc)
- □ Energy recuperation devices
- □ "Cold ironing" in ports

Market-based instruments

- □ Emissions Trading Scheme (ETS)
- □ Carbon Tax/Levy on Fuel
- □ Others
- Logistics-based
 - $\hfill\square$ Speed reduction
 - Optimized routing
 - □ Others

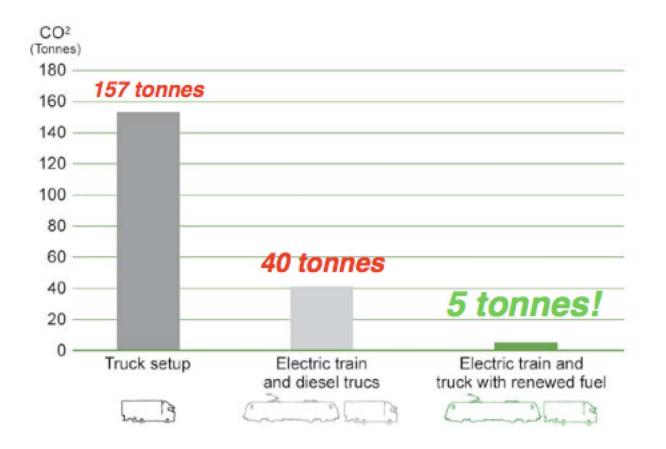
Brenner corridor (Munich-Verona)

Energy from tunnels

Recovered heat from tunnels will be utilized from the villages, cities: green energy

Inn-valley (Innsbruck – Kufstein): inner walls of tunnels: installing elements with thermal exchanging capacities: no additional cost

Periadriatic tectonic line from east - west: temperature gradient > $3,5^{\circ}C/100m \Rightarrow$ deep geothermic

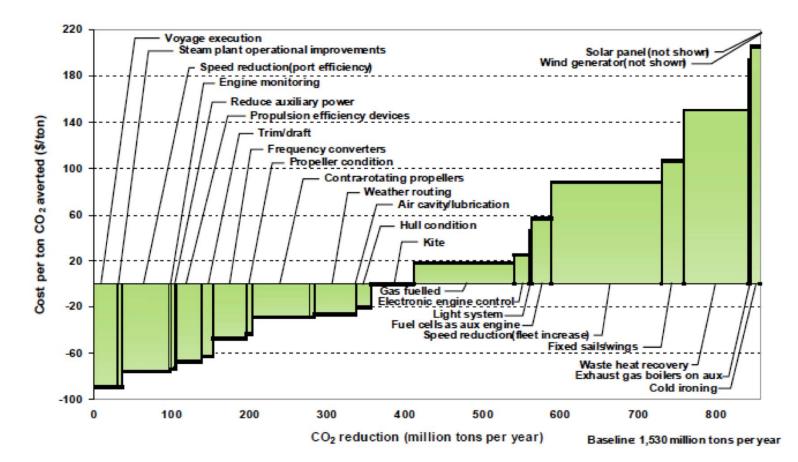

Pilot tunnel can be used afterwards for energy transport: 5 GW electrical line in gas-cooled 50 cm tube (research financed by DG TREN): low maintenance, no landscape disturbance)

Vehicle-fuel technologies

source: SCANIA

Indicative greening potential of some measures

- Downsizing of passenger cars and traffic avoidance major potential
- Hybridisation up to 20-25%
- Fuel efficient driving 10% (road, maritime)
- Improved traffic management through ICT 10%
- Improved aerodynamics 5%
- Electrification of rail -20-40%
- Empty running and poor load factors ??%
- Congestion charging and planning ??%
- Weight and length of vehicles ??%
- Modal shift ??%


Source: FreightVision, EU Transport Greenhouse Gases: Routes to 2050?, Future of Mobility Roadmap, and Supply Chain Decarbonization

Marginal abatement costs

Figure 1 - Average abatement curves for world shipping fleet 2030

Green logistics problems

- Routing and scheduling
- Pickup and delivery
- Warehouse location
- Fleet deployment
- Fleet size and mix
- Optimal speed
- Weather routing
- Intermodal network design
- Modal split
- Transshipment
- Queueing
- Terminal management
- Berth allocation in ports
- Supply chain management
- Etc etc

- Optimize with respect to traditional criteria
- Optimize with respect to environmental criteria
- Optimize with respect to both environmental and traditional criteria
- Try to find 'win-win' solutions!

1	

External costs of emissions

- Not faced by private operator
- Internalizing them would produce different solutions
- Market based measures aim to do that
 - Cap-and-trade
 - □ Carbon tax (levy)
 - Others

Kyoto Protocol

- United Nations Framework Convention on Climate Change -UNFCCC (1997)
- COP-15 Copenhagen 2009
- Urgent measures to reduce CO2 emissions are necessary to curb the projected growth of GHGs worldwide
- Some transport modes thus far escaped being included in the Kyoto global emissions reduction target for CO2 and other GHGs (mainly: shipping and aviation)
- Some regulation exists for SO2, NOx

Era of GHG non-regulation:

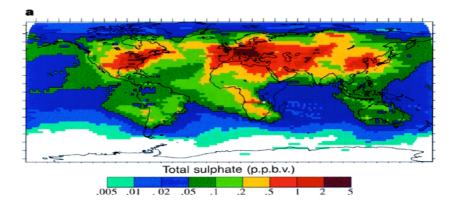
Rapidly approaching its end!

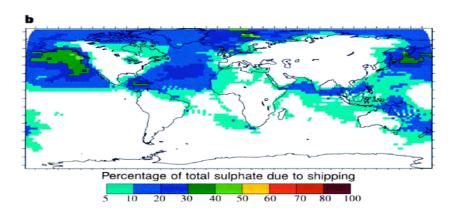
Measures to curb future CO2 growth are being sought with a high sense of urgency.

As CO2 is the most prevalent of these GHGs, any set of measures to reduce the latter should primarily focus on CO2.

Next UNCCC

- Cancun, Mexico, Dec. 2010
- Serious disagreement still exists
 - Mainly between developed and developing nations
 - Concept of Common but Differentiated Responsibilities





Emissions literature: vast

R&D and studies on:

- Estimation of emissions
- Impact of emissions on world climate
- Technological means to reduce emissions

Emissions 101

- Q: If we burn a ton of fossil fuel (Heavy fuel oil, diesel, or other), how much CO2 is generated?
- A: Between 3.02 and 3.11 tons, depending on the fuel

Some difficulties are basic

- Most global emissions estimates are based on modelling
- Example: Even estimates of past marine bunker sales are difficult to make
- Not much on logistical dimension!

GHG marine emissions estimates

IMO latest update of GHG study

Table 1: Consensus estimate 2007 CO2 emissions (million tonnes CO2). Source: Buhaug et al (2008)

	Low bound	Consensus estimate	High bound	Consensus estimate % Global CO ₂ emissions
Total ship emissions ¹	854	1019	1224	3.3
International shipping ²	685	843	1039	2.7

¹ Activity based estimate including domestic shipping and fishing, but excluding military vessels.

² Calculated by subtracting domestic emissions estimated from fuel statistics from the activity based total excluding fishing vessels.

		NA NA	TIONAL TE	CHNICAL U	NIVERSITY O	F ATHENS
					TIME TRANS	
		-	Ship E	mission	s Calculat	or
VESSEL DETAILS						
SELECT SHIP TYPE	Dry Bulk Carrier	SELECT SH	IIP SIZE Har	idysize BC 🛛 🔽	Slow Speed En 💌	
ROUTE	Tubarao-Rotterdar	n 🚩 🛛 TRIF	PISTANCE	4974 nm	9232 km	
PAYLOAD (tonnes)	2	5000 DW	T (tonnes)	27000		
OPERATIONAL DETAILS					1	
	TIME	FUEL OIL	r	DIESEL OIL		
STATE	(days) SPEED (knot	ts)				
			Consumption tonnes/day)	S % Consumpt		
SEA LADEN	15.94 13		24	(tonnes/c	0	
SEA BALLAST	15.94 13		24	1.5	0	
PORT (loading, discharging)	4	3.5	4.5	1.5	0	
FORT (loading,discharging)						
EMISSIONS						
				CO2	S02	NOx
ROUNDTRIP EMISSIONS KG P				99.31	2.19	2.73
ROUNDTRIP EMISSIONS GRAM				19.97	0.44	0.55
ROUNDTRIP EMISSIONS GRAM	1/15 PER LADEN tonne-KM			10.76	0.24	0.30
		[
SHOW/HIDE DETAILED F	ESULIS		E			HELP
DETAILED RESULTS						Ī
TOTAL BALLAST-LADEN DIST	ANCE	nm	9,948.00			
LADEN tonne-MILES		tonne*nm	124,350,000.00			
TIME IN PORT		days	4.00			
TRIP DURATION	SEA-LADEN	days	15.94	EMISSIONS		
	SEA-BALLAST	days	15.94	CO2	SO2 NOx	
TRIP DURATION						
TOTAL RTRIP DURATION		days	35.88	tonnes	tonnes tonnes	

382.62

0.00

0.00

1,212.89

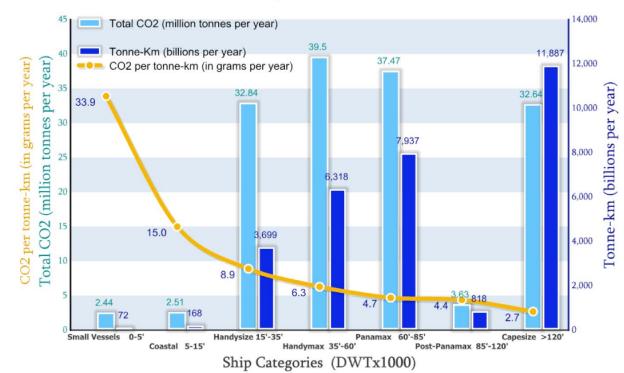
26.78

0.00

33.29

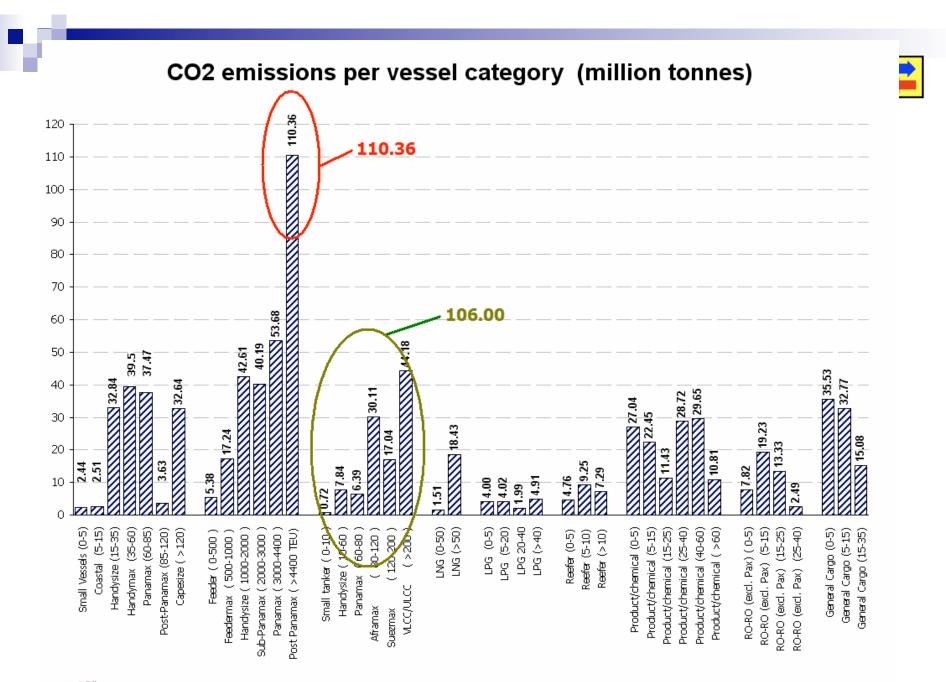
0.00

tonnes


tonnes

SEA LADEN

CONSUMPTION FO


CONSUMPTION DO

Dry Bulk Carriers

Г		-	1
L	7	-	L
L	1		

Energy Efficiency Design Index (EEDI)

Defined as

$$\frac{\left(\prod_{j=1}^{M} f_{j} \left(\sum_{i=1}^{nME} P_{ME(i)} \cdot C_{FME(i)} \cdot SFC_{ME(i)}\right) + \left(P_{AE} \cdot C_{FAE} \cdot SFC_{AE}*\right) + \left(\left(\prod_{j=1}^{M} f_{j} \cdot \sum_{i=1}^{nPTI} P_{PTI(i)} - \sum_{i=1}^{neff} f_{eff(i)} \cdot P_{AEeff(i)}\right) C_{FAE} \cdot SFC_{AE}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot C_{FME} \cdot SFC_{AE}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot SFC_{AE}\right) - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot SFC_{AE}\right) - \left(\sum_{i=1}^{neff(i)} f_{eff(i)}$$

Ratio of installed power divided by (capacity* speed) [gr CO2/ton-mile]

Logistics trade-offs

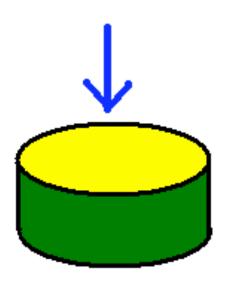
- Operational measures to reduce emissions may have ramifications as regards the logistical supply chain
- Measures such as speed reduction or others will generally entail costs, such as in-transit inventory and others (eg, bigger fleet to carry the same cargo).

Boomerang effect?

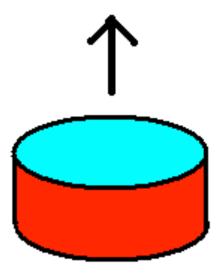
- Cleaner, low-sulphur fuel may make some modes of transport (and in particular short-sea shipping) more expensive and induce shippers to use landbased alternatives (mainly road)
- That might increase overall GHG emissions!

 [the Baltic is a prime example here]

In search of WIN-WIN policies


- "Win-win" is a nice set of words
- Finding win-win solutions may not always be easy.

The 'push-down, pop-up' principle


If you push one button down,

At least another one will pop up

Button no. 1: speed reduction in maritime mode

- Big savings in fuel costs
- Means to reduce emissions
- Pick up slack in containership overcapacity

Killing 3 birds with one stone?

'Pop-up' effects of speed reduction

Will need:

- Either more ships
- Or bigger ships
- Or both

To maintain same level of throughput

<u> </u>
- i i

In-transit inventory costs

- Hauling cargo at a reduced speed will entail additional in-transit inventory costs for the shipper.
- Such inventory cost is incurred during the time the cargo is in transit, and is equal to a factor of IC (\$/tonne/day), times the transit time, times the amount of cargo.
- IC = P*R/365, where P is the CIF price of the cargo, and R is the cargo owner's cost of capital.

Г	
L	
L	

Example (high-valued cargoes)

- Assume CIF = \$20,000/tonne
- And R = 8%
- Each day of delay in the delivery of one tonne of that cargo incurs a cost of \$4.38 to the shipper
- Total can be in the hundreds of millions of dollars

1

100 CONTAINERSHIPS GOING 21 KNOTS (case A)

- Transit time (one way) = 100 hrs = 4.17 days
- Round trip = 8.33 days
- Number of round trips per year (assuming 365 days operation): 43.8
- Tonnes carried each year (per ship): 43.8*50,000 = 2,190,000.
- Times 100 ships = 219,000,000.
- Total fuel burned/year/ship: 115 tonnes/day*365 = 41,975 tonnes
- Times 100 ships = 4,197,500 tonnes
- Total fuel cost (x\$600) = \$2,518,500,000.

105 SHIPS GOING 20 KNOTS (case B)

- Transit time (one way) = 105 hrs = 4.375 days
- Round trip = 8.75 days
- Number of round trips per year (assuming 365 days operation): 41.714
- Tonnes carried each year (per ship): 41.714*50,000 = 2,085,714.
- Times 105 ships = 219,000,000 tonnes.
- Total fuel burned/year/ship: 100 tonnes/day*365 = 36,259 tonnes
- Times 105 ships = 3,807,256 tonnes
- Total fuel cost (x\$600) = \$2,284,353,741, **REDUCED**.

1

A or B better?

- B reduces CO₂ emissions by 1,237,073 tonnes per year (versus A)
- Fuel cost difference: \$128,299 per additional ship per day
- If sum of additional cargo inventory costs plus other additional operational costs of these ships (including the time charter) is less than \$128,299 a day, then case B is overall cheaper.

Case of expensive cargo, high fuel prices, high charter rates (2007)

- If P= \$20,000/tonne (CIF price of cargo)
- p=\$600/tonne (price of fuel)
- OC= \$20,000/day (charter rate for Panamax ship- 2007)
- Cost of capital = 8%
- Then Δ(inventory costs) = \$200,000,000/yr
- Δ(charter costs)=\$45,625,000/yr
- Then case B is more expensive!

Unit Value of the Top 20 Containerized Imports at Los Angeles and Long Beach Ports, 2004

HS#	Category of Import	Value (Billions of dollars)	Weight (Thousands of short tons)	Unit Value (Thousands of dollars per ton)
84	Machinery, Boilers, Reactors, Parts	38.0	698.6	54.3
85	Electric Machinery, Sound and Television			
	Equipment, Parts	31.7	677.0	46.8
87	Vehicles and Parts, Except Railway or			
	Tramway	12.1	337.4	35.8
62	Apparel Articles and Accessories,			
	Not Knit or Crochet	9.9	132.4	74.6
95	Toys, Games, and Sports Equipment and			
	Parts	9.4	377.1	25.0
94	Furniture, Bedding, Lamps, Etc.	9.3	739.8	12.6
61	Apparel Articles and Accessories,			
	Knit or Crochet	9.0	132.1	68.4
64	Footwear	7.8	181.4	43.0
39	Plastics and Articles Thereof	5.2	409.0	12.8
73	Articles of Iron or Steel	4.4	467.0	9.4
42	Leather Articles, Saddlery, Handbags	3.8	117.2	32.1
90	Optic, Photographic, and Medical			
	Instruments	3.6	41.8	86.2

<u> </u>
_

Another 'push down, pop up' effect:

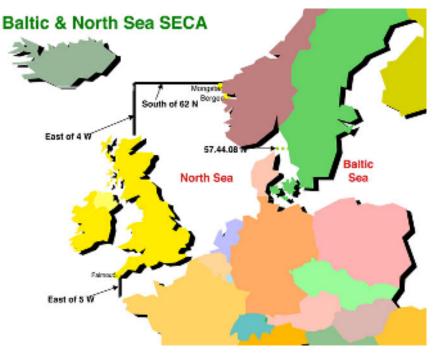
- In the short run, freight rates will go up once the overall transport supply is reduced because of slower speeds
- This may help the market,
- but shippers will foot the bill!
- [this fact is seldom mentioned in any of the discussions on green policies].

 $\stackrel{\checkmark}{\frown}$

Yet another 'push-down, pop-up' situation:

Slow down at SECAs

Use cleaner fuel at SECAs


[ramifications as regards other modes]

Sulphur Emissions Control Areas: SECAs

- SO2 reduction: high on IMO agenda
- Regional policies
- Big question: how to limit SO2 emissions
- Various measures (cleaner fuel, scrubbers)

SO2

- Produces acid rain
- I ton of fuel produces 0.02*S tons of SO2, where S is the % of sulphur content in fuel
- IMO: progressive reduction in SO2 emissions from ships, with the global sulphur cap reduced initially to 3.50%, effective 1 January 2012; then progressively to 0.50%, effective 1 January 2020.

	7	
_		

How about speed reduction?

- Can speed reduction at SECAs work, as a measure to reduce SO2 emissions?
- Less speed, less fuel, less SO2
- An easy question, for which the answer is not so easy.

Turns out that

- Speed reduction in SECAs will result in <u>more</u> <u>total emissions</u> (of all gases, including SO2) and more total fuel spent if speed is increased outside SECA to make up for lost time.
- The reduced emissions within the SECA will be more than offset by higher emissions outside (for all gases).
- The fuel bill will also be higher.

Use cleaner fuels in SECAs

- If a ship is forced to use low sulphur fuel at a SECA, to reduce SO2 emissions.
- This fuel is more expensive than high sulphur fuel. Hence freight rates go up.
- This may induce shippers to use land transport alternatives (trucking), which will increase CO2 emissions thru the logistics chain!

Use cleaner fuels in SECAs

Ship (A->B)

V=14 Kn, 30 tn/day HFO Fuel. Cons: 33.13 tonnes **CO2 :** 105.01 tn of CO2 3,39 grams per tonKm

Truck

(w=40 tonnes v=60 km/h) Fuel cons=43 lt per 100 Km

> We need 1,125 truck trips that produce 6 times more CO2 230 times more than SO2 saved

Cargo that will shift to road depends on :

- the unit fuel costs of each of the two options (both for low-sulphur and for high-sulphur fuel)
- how the road option is exercised (e.g., it could be 1,125 trucks doing one trip each, a fleet of 563 trucks doing two trips each, or any other combination)
- the transit times of each of the two options
- the inventory costs of the cargo

How to find out?

- Develop a model that examines these tradeoffs.
- Use the concept of generalized cost (taking into account value of time) and multinomial logit model to determine modal split.

Tran-siberian railway example

Modal alternatives

- Ship (mainly)
- Rail
- (road)
- (air)

1

Scenario

Ships reduce speed due to higher fuel prices and fleet overcapacity

Result: Reduced CO2

Side-effect: Potential cargo shifts

Trans-siberian railway cont'd

Far East to Europe by boat

- 43,000 km
- 7.8 gr CO2/tkm at full speed
- Reduced in a quadratic fashion for lower speeds
- 150,000 tons of cargo at 60% of max. speed produce 18,000 tons of CO2

Far East to Europe by rail

- 12,000 km
- Cargo arrives 26 days earlier
- Lower inventory costs
- 18 gr CO2/tkm
- Various technological and institutional barriers
- 150,000 tons of cargo produce 32,000 tons of CO2

How much cargo will be shifted?

2 modes, 1 and 2

- Lengths of routes L1, L2
- What happens if mode 1 reduces speed from V to V-ΔV?
- L1=40,000 km
- V=18 knots, reduced to 12.6 knots (by 30%)

Assume multinomial logit

$$x_i = \frac{e^{-\lambda C_i}}{e^{-\lambda C_1} + e^{-\lambda C_2}}$$

$$C_i = p_i + kt_i$$

New fraction

$$x_1^* = x_1 e^{-\lambda (p_1^* - p_1) + k \frac{L_1 \Delta V}{V(V - \Delta V)}}$$

Table 2

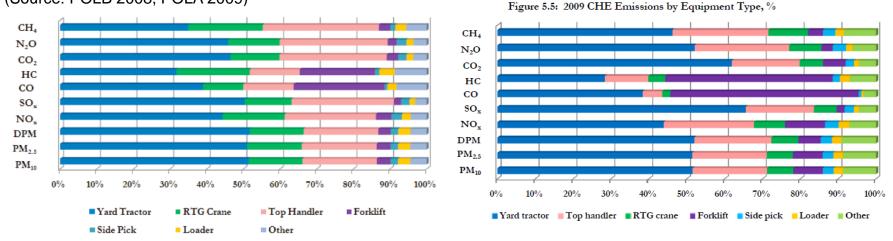
 x_1^*/x_1 as a function of *k* and the price difference.

$k/(p_1^*-p_1)$	0	-\$100/tonne	-\$200/tonne
\$2/day/tonne	0.958	1.059	1.170
\$5/day/tonne	0.898	0.993	1.097
\$10/day/tonne	0.807	0.892	0.986

Net result

- ΔCO2 may be >0 or <0, depending on scenario</p>
- Result unclear for more complex network scenarios
- Reducing CO2 in one mode may result in more CO2 overall

The role of ports


- No sense to have a ship burn a lot of fuel to go fast, only to have the ship wait in line to be served by a congested port.
- Yet, in the various discussions, this particular aspect has not received the attention it deserves.
- Ports are typically treated independently.
- Work at IAPH, ESPO, etc: significant

Port Equipment Emissions

CHE Emissions by Equipment Type for Container Terminal (Source: POLB 2008, POLA 2009)

Yard Tractors, Top Handlers, RTG Cranes, Forklifts and Side Pickers are the top polluters.

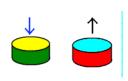
Yard tractors are the top emitters due to their huge population in a container terminal and their high average annual operating hours.

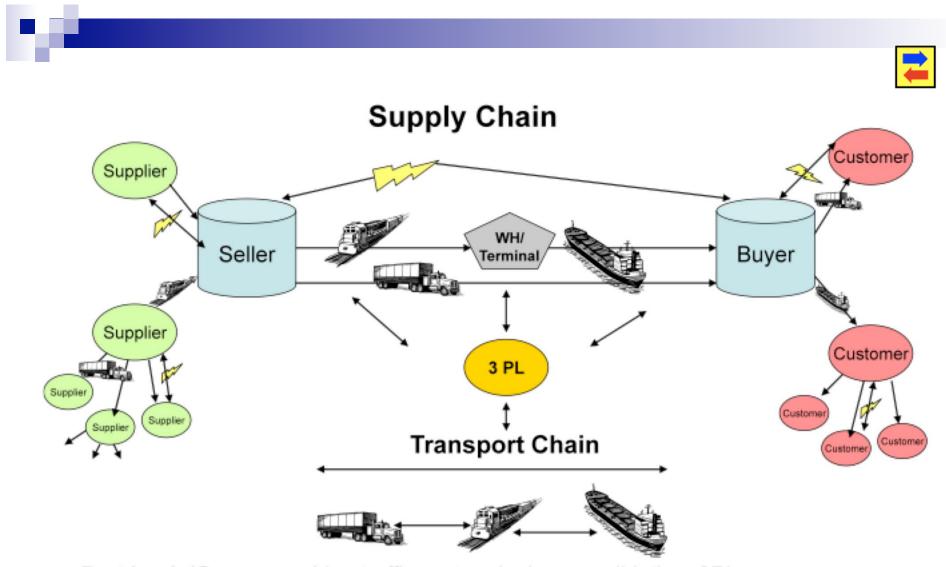
Top handlers are second in population and have also a high amount of operation time.

RTG cranes although are not that many, however they do have the highest nominal horsepower of all CHE.

Cold ironing

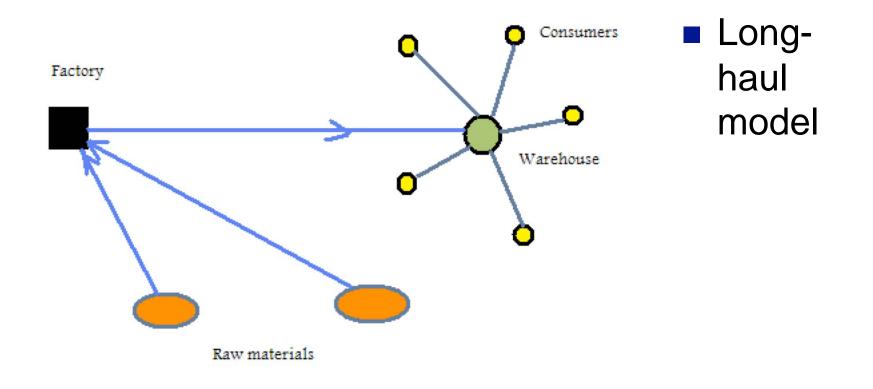
- provision of electricity to the ship by plugging into the port's electricity supply system
- Shut down auxiliary engines
- an idea that is likely to be the norm for many ports in the future




1

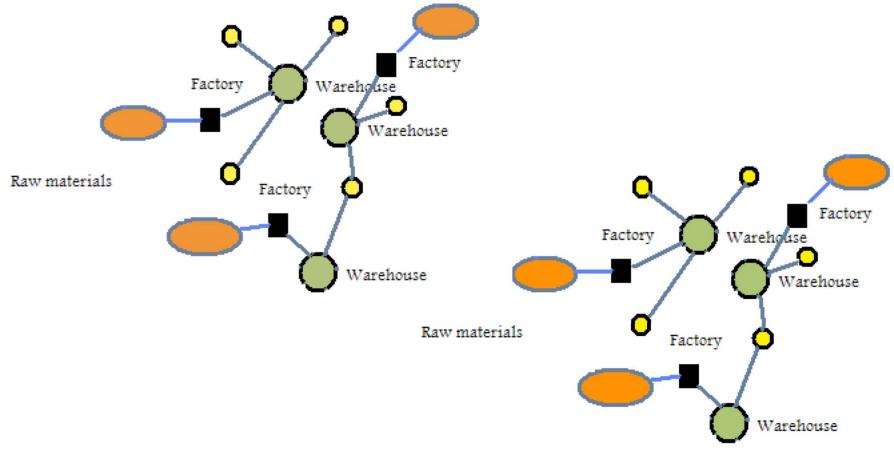
Questions

- How much air pollution will be produced by the generation of the extra shore electricity necessary for the cold ironing?
- Is that less than the emissions saved by switching off the ship's auxiliary power at port?


Part loads/Groupage: Line traffic - > terminals, consolidation, 3PL

Full loads/ FTL,FCL: Bulk, Tramp Traffic, Contracted containers/tankers/rail cars

11


Which model?

Short haul model

(if cost of transport emissions is high enough)

Is this green enough?

Globally, ruminant livestock produce about 80 million metric tons of CH4 annually, accounting for about 28% of global CH4 emissions from human-related activities

(source: US EPA)

Green corridors: great interest!

Green Intermodal Logistics

The SuperGreen project

A new EU FP7 project

7th Framework Programme

- Theme title: Transport (including Aeronautics)
- Type of project: Coordination and Support Action
- Project full title: Supporting EU's Freight Transport Logistics Action Plan on Green Corridors Issues
- Project acronym: SuperGreen

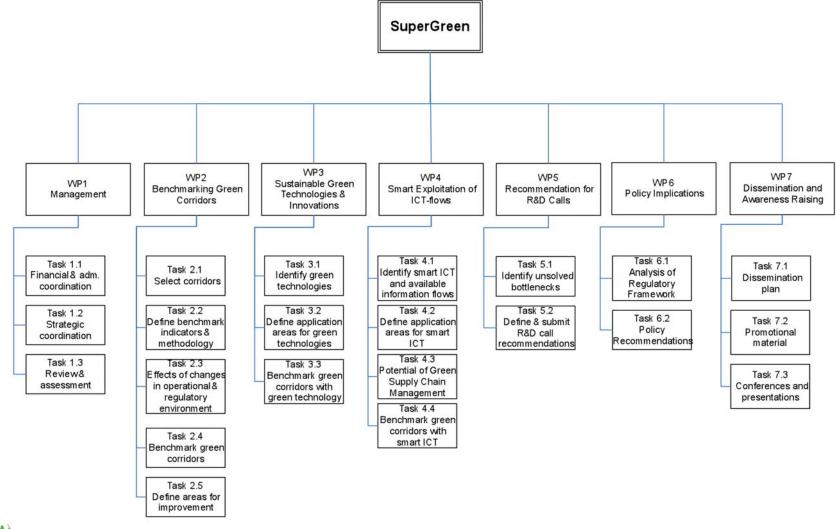
1

Objectives

- Support and recommendations on Green Corridors to EU's Freight Transport Logistics Action Plan.
- Encourage co-modality for sustainable solutions.
- Overall benchmarking of Green Corridors based on selected KPIs covering all aspects related to transport operations and infrastructure (emissions, internal and external costs).
- Conduct a programme of *networking activities between stakeholders* to facilitate information exchange, dissemination of research results and communication of best practises and technologies.

Objectives, contd.

- Deliver studies addressing topics important for the further development of Green Corridors.
- Deliver policy recommendations at a European level for the further development of Green Corridors.
- Provide recommendations concerning new calls for R&D proposals to support development of Green Corridors (eliminate bottlenecks).


The consortium

Partner Number *	Partner name	Partner short name	Country
1 (Coordinator)	National Technical University of Athens	NTUA	Greece
2	Norsk Marinteknisk Forskningsinstitutt AS, MARINTEK	MAR	Norway
3	Sito Ltd (Finnish Consulting Engineers Ltd)	SITO	Finland
4	D'Appolonia S.p.A.	DAPP	Italy
5	Autoridad Portuaria de Gijon Gijón Port Authority-	PAG	Spain
6	DNV Det norske Veritas	DNV	Norway
7	via donau Österreichische Wasserstraßen- Gesellschaft mbH	VIA	Austria
8	NewRail - Newcastle University	UNEW	UK
9	CONSULTRANS	CONS	Spain
10	PSA Sines	PSAS	Portugal
11	Finnish Transport Agency	FMA	Finland
12	Straightway Finland Ry	SWAY	Finland
13	SNCF Fret Italia	SFI	Italy
14	Procter & Gamble Eurocor	PG	Belgium
15	VR Group	VRG	Finland
16	Lloyd's Register-Fairplay Research	LRFR	Sweden
17	Hellenic Shortsea Shipowners Association	HSSA	Greece
18	Dortmund University of Technology	DUT	Germany
19	TES Consult Ltd	TES	Ukraine
20	Turkish State Railways	TCDD	Turkey
21	DB Schenker AG	SCH	Germany
22	Norwegian Public Road Administration	NPRA	Norway

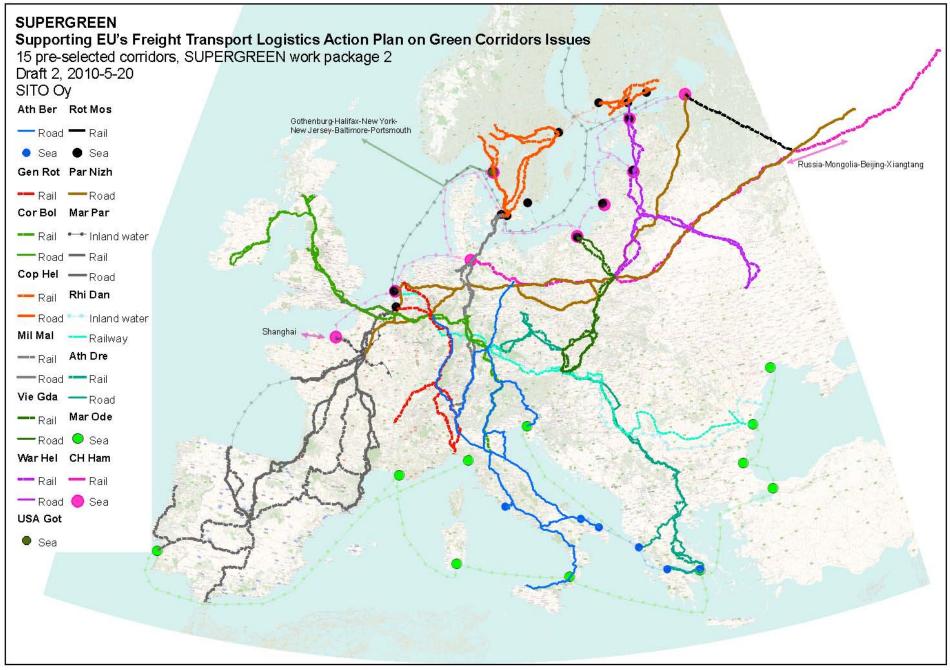
Γ.		~	
		7	
	ę		


SuperGreen work package structure

WP2: benchmarking green corridors

Preselection Process

- 1. Each corridor scored for each criterion of the following list on the basis of a score range from 1 to 5
- 2. The scores of a corridor against all criteria were summed to form the total score of this corridor (equal weights)
- 3. Corridors inside each geographical area were ranked based on their scores
- 4. The corridor exhibiting the highest score in each geographical area was pre – selected (9 corridors)
- 5. Following a final round of consolidation among the remaining corridors, six more were added in a way ensuring modal balance


PRE – SELECTION OF 15 CORRIDORS

Pre-selected 15 corridors

BerPal	Berlin-Munich-Salzburg-Verona/Milan-Bologna-Naples-Messina-Palermo,
	Branch A: Salzburg-Villach-Trieste (Tauern axis)
	Branch B: Bologna-Ancona/Bari/Brindisi-Igoumenitsa/Patras-Athens
MadPar	Madrid-Gijon-Saint Nazaire-Paris
	Branch A: Madrid-Lisboa
GenRot	Lyons/Genoa-Basle-Duisburg-Rotterdam/Antwerpen
CorBol	Cork-Dublin-Belfast-Stranraer
	Branch A: Munchen-Friedewald-Nuneaton Branch B: West Coast Main line
CopHel	Nordic triangle railway/road axis including the Oresund fixed link
MilMal	Malmö-Milan via Fehmarnbelt
VieGda	Gdansk-Warsaw-Brno/Bratislava-Vienna
WarHel	Warsaw-Kaunas-Riga-Tallinn-Helsinki + extension Kaunas-Minsk-Kiev
RotMos	Motorway of Baltic sea, St. Petersburg-Moscow
ParNizh	Berlin-Warsaw-Minsk-Moscow-Nizhny Novgorod
	Branch A: Warsaw-Lodz-Paris
	Branch B: Mechelen-Rotterdam-Amsterdam-Hanover-Warsaw-St. Petersburg-Moscow
RhiDan	Rhine/Meuse-Main-Danube inland waterway axis
	Branch: Betuwe line
AthDre	Igoumenitsa/Patras-Athens-Sofia-Budapest-Vienna-Prague-Nurnberg/Dresden
SinOde	Odessa-Constanta-Bourgas-Istanbul-Piraeus-Gioia Tauro-Cagliari-La Spezia-Marseille-
	(Barcelona/Valncia)-Sines
	Branch: Piraeus-Trieste
CNHam	Shanghai-Le Havre/Rotterdam-Hamburg/Gothenburg-Gdansk-Baltic ports-Russia
	Branch:Xiangtang-Beijing-Mongolia-Russia-Belarus-Poland-Hamburg
	Gothenburg-Halifax-New York-New Jersey-Baltimore-Portsmouth

9 selected corridors (Helsinki workshop, June 2010)

BRIEF DESCRIPTION- BRANCHES	NICKNAME
Malmö-Trelleborg-Rostock/Sassnitz- Berlin-Munich-Salzburg-Verona-	
Bologna-Naples-Messina-Palermo	
Branch A: Salzburg-Villach-Trieste (Tauern axis)	
Branch B: Bologna-Ancona/Bari/Brindisi-Igoumenitsa/Patras-Athens	Brenner
Madrid-Gijon-Saint Nazaire-Paris	
Branch A: Madrid-Lisboa	Finis Terrae
Cork-Dublin-Belfast-Stranraer	
Branch A: Munich-Friedewald-Nuneaton Branch B: West Coast Main line	Cloverleaf
Helsinki-Turku-Stockholm-Oslo-Göteborg-Malmö-Copenhagen (Nordic	
triangle including the Oresund fixed link)- Fehmarnbelt - Milan - Genoa	Edelweiss
Motorway of Baltic sea	
Branch: St. Petersburg-Moscow-Minsk-Klapeida	Nureyeev
Rhine/Meuse-Main-Danube inland waterway axis	
Branch A: Betuwe line	
Branch B: Frankfurt-Paris	Strauss
Igoumenitsa/Patras-Athens-Sofia-Budapest-Vienna-Prague-	
Nurnberg/Dresden-Hamburg	Two Seas
Odessa-Constanta-Bourgas-Istanbul-Piraeus-Gioia Tauro-Cagliari-La	
Spezia-Marseille-Barcelona-Valencia-Sines	
Branch A: Valencia-Marseille-Lyons	
Branch B: Piraeus-Trieste	Mare Nostrum
Shanghai-Le Havre/Rotterdam-Hamburg/Göteborg-Gdansk-Baltic ports-	
Russia	
Branch:Xiangtang-Beijing-Mongolia-Russia-Belarus-Poland-Hamburg	Silk Way

Main groups of KPIs

- Economy/efficiency
- Service quality
- Environmental sustainability
- Infrastructure sufficiency
- Social issues

KPI Area: Economy/Efficiency

Relative Costs Measured in € per tonkm Absolute Costs Measured in € per ton (m³)

1

Service/ Quality KPIs

Total transport time

- either in total hours or days,
- or the average km/hr between origin and destination
- Reliability/"time precision"
 - Percentage delivered on time
 - On time; within X minutes/hours (expected vs actual)
 - Redundancy- resiliency
- ICT applications (e.g. to track cargo)
 - Degree of availability
- Frequency of service
 - No of services per day /week
- Cargo Security (damage due to crimes/unlawful acts)
 - Insurance cost
 - Incident rate
- Cargo Safety (incidents/accidents harming goods)
 - Insurance cost
 - Incident rate

Environmental sustainability KPIs Greenhouse gases - global \Box KPI: Grams of CO₂ equivalent pr tonkm Polluters - local & regional effects □ KPI: Grams emissions per tonkm ■ NO_X SO_{x} ■ PM _{2.5}

Infrastructure sufficiency KPIs

Congestion

average delay in minutes/hours

□ value of time lost/marginal social cost in € per tonkm

Bottlenecks

Number per type and seriousness

□ Latest report: TEN-T conference in Zaragoza

Social issues KPIs

- Population affected
- Safety

Number of accidents or fatalities

Noise

- Percentage of stretch where noise level is <50 dB/ <55dB (trains)</p>
- Corridor description in terms of land used in percentage of the entire stretch that passes through different areas:

Natural sensitive areas

Areas with endangered species ("frog factor")

🗆 Urban areas

Inter urban areas

Get connected

www.supergreenproject.eu

Send an email to <u>supergreen@martrans.org</u>

(SuperGreen friends email list: keeping track of the project)

Library section of site

Supporting EU's Freight Transport Logistics Action Plan on Green Corridors Issues

Home	Project	Partners	News/Events	Public Info	Library	Contact

Library

Studies and EU documents

---> Click here to see a list of relevant studies.

Link to relevant Projects

TELMELOW

---> Click here to see a list of relevant projects.

Green Intermodal Logistics

i de al a cara d

Links to projects

upporting EU's Freight Transport Logistics Action Plan on Green Corridors Issues

Home	Project	Partners	News/Events	Public Info	

Library/Projects

ALL MODES / LOGISTICS

BELOGIC: Improve the quality and efficiency within and across different modes of transport, by means of benchmarking in logistics and co-modality

BESTLOG: Establish an exchange platform for the improvement of supply chain management practice across Europe

BRAVO: Develop and demonstrate an action strategy on intermodal rail-road transport services comprising major scientific and technological as well as pragmatic activities along the Brenner corridor

CAESAR: CA for the European Strategic Agenda of Research on Intermodalism and Logistics

CHINOS: Support transport operators by employing innovative IT technology solutions

DE-LIGHT TRANSPORT: Develop new solutions, methods and tools for the design, production and integration of complex modular lightweight structures in ships, intermodal transport containers and railway vehicles

e-FREIGHT: Denotes the vision of a paper-free, electronic flow of information associating the physical flow of goods with a paperless trail built by ICT, including the ability to track and trace freight along its journey across transport modes and to automate the exchange of content-related data for regulatory or commercial purposes.

EU TRANSPORT GHG: ROUTES TO 2050?: Take a first step in developing a long-term strategic approach to ensuring the compatibility of transport's GHG emissions with the EU's long-term climate goals.

Links to studies/EU docs

Super Green Supporting EU's Freight Transport Logi	istics Action I	Plan on Green	Corridors Issu	les				Log
	Home	Project	Partners	News/Events	Public Info	Library	Contact	
			1	<i>L</i> ,				
Studies/EU docume	nts					Cate	gories	
						1	LIBRARY - STU	DIES
All relevant studies and documents have t	neen catenorize	ed and you can	access each ca	teanry by clicking	on the menu on	j.	All Modes / Log	gistics
the right.	Seen coregonize			tegory by cherning			Maritime	
							Railways	
	c	ATEGORIES					Ports	
	All N	lodes / Logistics				i.	Inland Waterw	ays
	2.44.1	Maritime					Urban Transpo	rtation
		Railways				Î.	Infrastructure	
	Inla	Ports and Waterways				- i	Policy	
		n Transportation	1				Strategy	
	I	nfrastructure						
		Policy Strategy						

First Regional SuperGreen Workshop Naples, Italy, October 19, 2010

REGISTRATION FORM

IMPORTANT NOTE: Advance registration to the workshop is necessary due to limited space. Registrations will be processed on a first-come, first-served basis. Confirmation will be sent to you by email.

Pre-registration deadline: October 8, 2010.

PLEASE SEND THIS FORM BY EMAIL TO Francesca Russolillo at Francesca.russolillo@cis.it

NAME		
COMPANY_		
PHONE		
FAX		
EMAIL		

YES, I PLAN TO ATTEND THE WORKSHOP

Date:

1

Conclusions

- Green intermodal logistics is an area whose importance will increase
- Limiting emissions in one part of the intermodal chain may increase emissions in another
- Holistic approaches are necessary
- 'Win-win' solutions are sought
- Great opportunities for OR/MS models!

Acknowledgments

- Hellenic Chamber of Shipping
- Det Norske Veritas
- American Bureau of Shipping
- European Commission
- The Lloyds Register Educational Trust

Thank you very much!

www.martrans.org

