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We develop an optimization procedure for assisting decision-makers in the allocation of
resources for cleaning up a specific oil spill. The objective function is to minimize a weighted
combination of spill-specific response and damage costs. Inputs. to this problem include
information about the outflow of oil, availability and performance of spill cleanup equipment,
as well as costs of equipment transported and on-scene operation. A general (albeit separable)
damage function is assumed. The algorithm is deterministic and is based on a dynamic
program within which a series of 0-1 knapsack problems are solved repeatedly. Although this
algorithm is approximate. its worst-case performance is quantified and we argue that under
realistic inputs the procedure can be expected to produce solutions very close to optimality.
Under prescribed conditions we prove that the algorithm produces optimal solutions. A
realistic example based on the Argo Merchant oil spill is presented to provide insight into the
structure of this problem. Finally, we discuss possible uses of this model within the existing
and alternative operational and policy environments.

(DYNAMIC PROGRAMMING—APPLICATIONS: ENVIRONMENTAL MANAGE-
MENT)

1. Introduction

Massive catastrophic oil spills such as the Torrey Canyon spill in Britain (1967), the
Amoco Cadiz spill in France (1978), and the IXTOC-1 spill in Mexico (1979) always
focus public attention on the damage caused by such accidents. While such massive
spills are very rare, many more small and moderate spills occur on a daily basis from a
variety of sources: operational discharges from tankers, vessel collisions. pipeline
ruptures, etc. As a result, oil spills have become an everyday concern for governments,
as well as for the ocean transportation, oil exploration and oil production industries,
and a whole spectrum of actions are taken or considered in order to alleviate oil spill
problems. A significant part of such actions falls into the response category.

Oil spill response concerns the emergency action that must be taken so that
pollution of the sea and coastline is kept under control once an oil spill occurs. Part of
such action involves the dispatching of specialized cleanup equipment to the spill site
in order to contain and recover the spilled oil. Equipment may be a combination of
booms, which are protective barriers that help prevent the uncontrollable spreading of
the oil; skimmers, which are devices that pump and recover the oil; barges, which can
be used to transport the recovered oil to a disposal site: sorbents, which are materials
to absorb the oil, and a variety of other means. In addition, chemicals can be used in
order to disperse the slick. The real-world decision-maker (in the case of the Coast
Guard, the On Scene Coordinator) is faced with an extremely complex problem,
having to address such issues as availability of equipment, performance degradation
with bad weather, and uncertain movement of the oil slick, and having also to balance
the potentially high and uncertain cost of oil spill damage with the similarity high cost
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of cleanup operations. The problems become even more complex for the strategic
planner who must recommend “optimal” stockpiles of cleanup equipment so as to
respond to spills that may occur in the future.

Although the core of the oil spill cleanup problem seems to be the question of the
evaluation of the tradeoffs between cleanup and damage costs, literature has typically
ignored those tradeoffs. Most of the literature to date has dealt with laboratory and
theoretical research on the behavior and effects of oil at sea, with specific case studies
that assess the environmental or economic impact of a specific spill, or with work on
the performance of oil spill recovery equipment. Very few studies to date have
addressed the decision-making process in oil spill cleanup (see, for instance, Fraser and
Cochran 1975, Dietzel et al. 1976, Conrad 1978, Charnes et al. 1979, TSC 1979,
Seaward International 1979, Versar 1981, and Belardo et al. 1984). However, while all
of these studies have merit. they are not enough to make the state-of-the-art in oil spill
decision-making comparable to the state of knowledge in other emergency service
environments, such as the urban one, for which there is a vast literature covering both
methodology and applications (see, for instance, Walker et al. 1979, among many
others).

The purpose of this paper is to describe an analytical methodology developed to
assist the decision-maker to make an optimal allocation of resources for cleaning up a
specific spill after its occurrence is made known. This work is part of a broader
Massachusetts Institute of Technology project that began in July 1979 with support
from a consortium of government and industry organizations. The goal of the overall
project has been to create a computerized tool that would provide the user with the
ability to analyze complex decisions regarding oil spill cleanup. The model-—whose
generic structure 1s shown in Figure 1—integrates all relevant parts of a spill response
system and explicitly incorporates analytical descriptors of system performance as well
as decision-making techniques. The description of the entire model structure is beyond
the scope of this paper—the interested reader is referred to Psaraftis (1982), Psaraftis et
al. (1983. to appear), Ziogas (1982), and Tharakan (1982) for more details. This paper
focuses on the so-called “Tactical-Model™ (see Figure 1).
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GURE 1. Structure of the MIT Oil Spill Model.
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Drawing from Anthony’s hierarchical framework for the analysis of business sys-
tems (Anthony 1965), one can divide the oil spill decision-making process into three
hierarchical levels: strategic, ractical, and operational. Various definitions of these levels
appear in the literature. In this paper, we use the following definitions:

(1) The strategic level, where one wishes to determine the quantities, types and
locations of equipment that should be stockpiled to respond to potential future oil
spills;

(2) The tactical level, where one wishes to determine aggregate actions that should
be taken to respond to a specific spill, such as what equipment should be dispatched
on scene, how long that equipment should stay on scene, etc.; and

(3) The operational level, where one examines in much more detail actions that must
be taken on scene, such as geometric configuration of boom deployment, skimming.
dispersants, etc., or spatial allocation of cleanup resources to protect sensitive areas.

This paper develops algorithms for the ractical decision level. It assumes that
strategic variables have already been decided upon, and that operational variables will
be decided upon after the tactical-level decisions are made. Of course, decisions made
at the upper levels are constraints on the problems defined at the lower levels.
Conversely, information from the performance of the system at the lower levels may
be used to feed back into the problems defined at the upper levels.

It is also clear that although the line between the strategic and tactical decision
levels is explicitly defined, the distinction between tactical and operational decisions is
arbitrary (for this problem). Both tactical and operational decisions concern actions in
response to a specific spill. However, complexity considerations suggest that it would
be unwise to include simultaneously all of such actions (from the most aggregate to the
most detailed) into a single decision problem. The distinction between the two levels is
made so as to both capture the aggregate features of the response (tactical level), and
allow greater user discretion on the more detailed actions on scene (operational level).
The operational-level actions are much more unstructured or even impossible to
model.

The remainder of the paper is organized as follows:

In §2 we define a generic version of the tactical decision problem and formulate it as
an optimization problem. §3 develops both an exact and an approximate solution
methodology, both based on Dynamic Programming, for solving the above problem. It
1s seen that the approximate procedure is substantially more tractable than the exact
one and, under realistic assumptions, produces near optimal or optimal solutions. §4
presents a realistic illustration of the model in conjunction with the Argo Merchant oil
spill. The illustration highlights possible uses of the model within the existing and
alternative operational and policy environments. Those uses are further discussed in
§5, together with other issues and suggestions for further research.

2. Definition of the Tactical Decision Problem

We start the description of the tactical decision problem with the drastic assumption
that the problem is deterministic, even though the inputs to this problem include
variables such as spill outflow rate or weather conditions, which are inherently
unpredictable in the real world. However, we must learn to walk before we can run. As
it will be seen below, the tactical decision problem has nontrivial difficulty even in its
deterministic version. Moreover, the solution to the deterministic version will be seen
to provide significant insights into the structure of the problem, insights that may be
useful in a stochastic extension. Such an extension has not been examined in this
paper. The description of a generic “tactical” oil spill scenario follows:

At some specific time and at some geographical location, an oil spill of known ol
type and quantity occurs. The spill is reported to the responsible authorities at a given
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notification time after it occurs. A variety of oil spill cleanup “equipment sets” are
located at known sites and are available for dispatch to the spill site. The performance
of each equipment set is a known function of the prevailing weather conditions. Future
weather conditions and spill outflow are known with certainty. The problem can be
phrased as follows: If the costs of using each equipment set in cleaning up the spill are
known, and if the damage costs that would occur if the oil impacts sensitive areas are
known, what is the “response tactic” that minimizes a weighted combination of
spill-specific cleanup and damage costs?

Some important clarifications follow:

(1) By oil spill cleanup *“equipment set” we mean an integrated, sufficiently
equipped and self-contained package capable of “‘cleaning up” a prescribed quantity of
oil in a given period. “Cleaning up” is interpreted here in a generic sense to mean
anything that effectively prevents the oil from impacting sensitive areas. It can mean
that the oil is “contained and removed by mechanical means and then stored,
transported and disposed of:” that the oil 1s “treated and dispersed by chemical means
into the water column;” or that some other effective measure 1s taken. An equipment
set 1s composed of several individual components. For instance, an integrated skim-
ming system is typically a combination of booms, pumps and storage capacity. The
dispatching time, cost, and performance of the set depend on the dispatching times,
costs and performances of all its separate components (which need not be stockpiled
all at the same location). In this paper we shall not attempt to analyze how the
performance of each part affects the whole. Rather, we assume that we are dealing
only with a specified number of sets. all of which have known performances. Similarly
we shall not be concerned here with the mechanisms that make the above performance
dependent on the prevailing weather conditions, but rather assume that the perfor-
mance is a known input (for details on the modeling of equipment performance see
Ziogas 1982). The rationale of using equipment sets instead of individual components.
as well as how one goes about defining those sets is further discussed in §5.2.

(2) All costs of using cleanup equipment are assumed to be spill-specific, variable
(opportunity) costs. In other words, equipment acquisition costs and other costs that
have been committed at the strategic decision level are sunk costs and are not
considered in the tactical problem.

(3) An oil spill typically spreads onto a surface area of considerable size, and
consists of individual components called spillets. The behavior of each spillet is tracked
by the “Trajectory” part of the overall model as a function of prevailing weather
conditions and the characteristics of the spill. In our model, the response at the tactical
level is only an aggregate response. It does not attempt to “optimize” the spatial
distribution of cleanup resources among spillets. In that respect, the tactical level
assumes that all equipment is distributed to all spillets uniformly, namely, that a spillet
of 3,000 gallons of oil would receive, on the average, three times more cleanup
capability than a spillet of 1,000 gallons of oil, irrespective of the location of those
spillets. The tactical level also assumes that equipment mobilization can only control
the volume and not the trajectory of each spillet. Those assumptions of course concern
only the tactical level of the problem. Once an aggregate response is established at that
level, the user can enter the operational level where he can make further decisions on
how to allocate that response across the geographical area of interest. Implicit in all
the above is the assumption that potential damages accounted for in the evaluation of
tactical decisions do not depend on decisions at the operational level, but only on
tactical response decisions. A discussion of what happens if we relax this assumption
(that s, if we allow such feedback from the operational level into the tactical level) is
presented in §5.3. The way damages are calculated is explained later on in this section.
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(4) Decisions at the tactical level can be further broken down into two levels of
aggregation: At the more aggregate level are decisions on the “aggregate cleanup
capability” necessary to respond to the spill, expressed in volume of oil cleaned up per
unit of time and throughout the duration of the spill. At the more detailed level are
decisions on what specific equipment sets should be dispatched on scene, including
from what locations the dispatching should originate, throughout the duration of the
spill. Decisions at an even more detailed level (such as exactly how should equipment
be spatially deployed, how should it be operated, etc.) belong to the operational level
of the problem and will not be considered here. We assume that the decision-maker
accounts for all events and evaluates decisions at discrete points in time. These points,
called rime stages, are separated by a user-specified time interval (e.g. 3 hours, 6 hours,
etc.). A sequence of such decisions is what is termed a “response tactic” for the spill in
question. It is clear that a response tactic is uniquely defined once the sequence of
decisions at the more detailed level is known, for that sequence of decisions is known,
the aggregate cleanup capability is known as well. The main justification for the
consideration of the response tactic at two levels of aggregation is computational
efficiency, as we shall explain further in §3.

(5) The objective for the tactical decision problem is to minimize the sum of two cost
components: the spill-specific cleanup costs (assumed to be weighted by 1), and the
damage costs, multiplied by a wuser-specified weight. By systematically varying the
weight of the damage costs, the user can adjust the relative emphasis of one of the two
cost components versus the other and evaluate the tradeoffs between them. More
discussion on this point is presented in §5.4.

Based on the above we are in a position to define the input variables to the tactical
decision problem as follows:

1. W: The user-specified weight by which damage costs are multiplied. Cleanup
costs are assumed to be weighted by 1.0 (0 < W < + c0).

2. Dt: The user-specified time interval between two consecutive time stages (in
hours).

3. NOTFI: The time stage corresponding to the spill notification time.

4. NOUTFL: The time stage corresponding to the “end of oil spill outflow,” beyond
which there is no more discharge of oil into the sea.

5. NCLUP: An upper bound for the time stage corresponding to the “end of
cleanup operations,” beyond which all equipment sets return to their bases.

6. NENDSP: An upper bound for the time stage corresponding to the “end of the
spill event”, beyond which no more events related to the spill in question are
significant enough to be accounted for.

7.d, (n=1,...,NOUTFL): The volume of oil that is discharged during the time
interval [nDr,(n + 1)Dr]. This volume is assumed to be discharged instantaneously at
time stage n (in gallons).

8. NOEQ: Number of distinct equipment sets available.

91, (i=1,...,NOEQ; n=1,..., NCLUP): The time (in time stages) it takes
equipment set / to arrive on scene if it arrives there at time stage n. 7, consists of
mobilization delays plus the transport and set-up times needed to have «// components
of set / on scene and operable. 7, depends on n since the “spill location” (defined for
the tactical decision problem as the location of the centroid of the spill) will generally
move due to wind, currents, etc.

10. r,, (i=1,...,NOEQ; n=1,..., NCLUP): The volume of oil that can be
“cleaned up” if equipment set i operates on scene between time stages n and n + 1 (in
gallons). r, is time-dependent since the performance of set / depends on weather
conditions which may change with n.
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1. fe; (i=1,...,NOEQ): Fixed costs incurred whenever equipment set i is
dispatched on scene. This includes costs such as mobilization, transportation and
set-up. but does not depend on how long set / stays on scene.

12.¢,, (i=1,...,NOEQ; n=1, ..., NCLUP): Operating cost of equipment set i
if it spends time on scene between stages n and n + 1.

Some of the above inputs (such as ¢,,.r,,,c,,) are derived inputs, that is, depend on
inputs such as weather conditions, manufacturer’s specifications, spill location etc.,
which are not explicit inputs to the tactical problem. Those inputs are furnished to the
tactical model via other parts of the overall model (Trajectory, Operational etc.).

Decision variables for the tactical decision problem are the following (n=1,...,
NENDSP; i =1,..., NOEQ):

1. X,: Aggregate cleanup capability on scene at time stage n. This is the amount of
oil “cleaned up” between time stages n and n + 1.

2. Y, = 1 if equipment set i is on scene at time stage n, 0 otherwise.

Optimal tactical decisions depend not only on the cleanup cost information men-
tioned above, but also, and with equal importance, on damage information. Assume
that the volume of oil at sea at time stage n is equal to 4,. A certain amount of oil will
escape (become nonrecoverable) between n and n+ 1. The “escaping” process is
highly complex and nonlinear. It is governed by phenomena such as evaporation,
drifting, natural dispersion etc., and also depends on the cleanup capability on scene at
the time.

In this paper we shall assume that the volume of oil escaping cleanup between time
stages n and n + 1 is furnished externally by the “escape function” f,(4,.4d,,X,). f, is
furnished by the “Trajectory Model” (Figure 1) which takes into account information
such as winds, currents, water depth, type of oil, etc., and returns outputs such as
amount of oil evaporated, dispersed, and emulsified, tracks down the movement of the
oil in the area of interest, and determines parameters such as thickness and surface
area of the slick (see Ziogas 1982).

The portion of the nonrecoverable oil that will impact environmental and economic
resources in the area will create damages. In this paper we shall assume that the
damage costs due to the escaped oil f, are furnished externally by a function
D,(A,.d,.X,. f,) (damage function). Like f,. D, is n itself part of a complex algorithm
that takes into account information about toxicity of oil, location of resources in the
area of interest, and includes the value of the lost oil (Damage Assessment Model of
Figure 1). The reader should refer to Demis (1984) for a detailed discussion of the
methodology used to construct such a function. D, is usually highly nonlinear due to
“threshold” effects that can take place when oil hits the shoreline. However in this
paper we assume that damages are time-wise separable: they can be broken down by
time stages. A discussion of the separability assumption and other aspects of the
damage function is presented in §5.1.

Based on the above we can write the problem’s objective function as follows:

NENDSP NOEQ
Minimize > 2 [aYatfY,(1-Y, )]

n=1 i=1

NENDSP
+W- > DA,.d,. X, |,) (1)

n=1

There are a number of constraints in our problem:
(1) Clearly, the aggregate cleanup capability X, is related to the vector of Y,’s:

n

NOEQ
X, = S r,Y,. n=1 ..., NENDSP. ()
i=1
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(2) An equipment set cannot be on scene earlier than the time it takes to notify,
mobilize, dispatch, and set-up that set. Hence

Vi (ti, + NOTFIL — n) < 0. i=1,...,NOEQ; n=1,...,NENDSP. (3)

(3) There is conservation of mass for the oil between n and »n + 1. The transition
equation is given by:

A, =Max[0.4,+4d, - [, —X,]. n=1,NENDSP — I, (4)

where the maximum is taken since it is conceivable that 4, + d, — f, — X, < 0 (excess

capability on scene).
(4) Finally, forn=1,... , NENDSP;/i=1,..., NOEQ:

X, >0; Y, =0orl: Yio=0: A, > 0. (5)

n

in

3. Solution of the Problem

This section is structured in three parts. First, we present an exact Dynamic
Programming algorithm for solving the tactical decision problem outlined in the
previous section. For anything but very small problem sizes such an approach is
intractable from a running time and storage requirement viewpoint. Second, we
present an approximate version of the above algorithm for solving the same problem.
The approximate version can solve the problem with only a fraction of the running
time and storage required by the exact version. Third, we derive bounds that quantify
the approximate algorithm’s worst-case performance (in terms of deviation from the
exact optimum) and argue that the algorithm’s average performance can be expected
to be very good under realistic input values and optimal under special circumstances.

3.1.  Exact Algorithm

Define V*(A,.Y, ) as the minimum achievable total weighted cost from time stage
n until the end of the event, given that at stage n the “state” of the event is as follows:

(a) Volume of oil at sea: 4,.

_(b) Cleanup equipment on scene between stages n — 1 and » described by the vector

n—l (Ylnfl""’ YN()[:Q.N’ l)'

Decision variable for the next stage is Y,. the vector defining what equipment
should be on scene from n to »n+ 1. 1t is then clear that V*(A4,.Y,_,) obeys the
following recursive formula:

For I < n < NCLUP:

Vi(4,.F, ) = Min [ S eVt S fo V(- Y,

weEE, iel, icl,

n—

+W- DH(AI ° z Tin m j;z) u+](’4n+l’)—/n) . (6)

iel,

For n = NCLUP:
_ NENDSP
VE(A, Y, )=W- AE Dy (A, . 4.0, i) (7
-1

where, for 1 < n < NENDSP:

fi:t, + NOTFl —n <0} if 1 <n<NCLUP,
= { J )
0} otherwise;
E,={ Y,:Y,=0orlfori€l, 0 otherwise } : (9)

11+1_Max[t0’4 +d - z Fin m fn . (]0)

iel,
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In (7) damages accrue according to a “do-nothing” (or, euphemistically, “surveillance
and monitoring™) tactic for n > NCLUP. (8) defines the equipment sets that can
physically be on scene at stage n, while (9) defines the feasible combinations of vector
Y. Relation (10) is the equivalent of (4) and defines A,,+I in both (6) and (7). Finally,
in (6), (7) and (10) we have written f, instead of f,(4,.d,,>c, 1;,Y,,) for convenience
purposes. Of course, all terms of the form Y, 7, Y, vanish for n > NCLUP.

The optimal value of the tactical decision problem is VO, 0) where 0 is the zero
vector for the value of Y,

It is clear that the storage requirement associated with this exact algorithm is
O(NVOL - NCLUP - 2N°EQ) where NVOL is the number of values necessary to
discretize A,. In addition, the fact that we have a maximum of 2NOEQ alternatives for
equipment dispatching at the next stage makes the total computational effort of this
algorithm grow as O(NVOL - NCLUP - 22N9EQ) 4 clearly intractable function for
anything but trivial problems.

3.2. Approximate Algorithm

The algorithm developed above is intractable mainly because we have to keep in the
state space vector ¥, ,, whose domain has size that is an 1 exponential function of the
number of equipment sets. Suppose now that instead of ¥, , we decide to use X,_,,
the aggregate on scene capability between n — | and n, as a surrogate representation of
equipment deployment on scene. Clearly, specifying X, _, instead of Y, _, gives us only
a partial idea of the equipment configuration between n — | and n, for there may be a
great number of ways equipment sets can be combined to produce a total cleanup
capability of X, _,.

The approximate approach assumes that the only possible combination of equip-
ment sets corresponding to a given aggregate capability is the one that guarantees at
least such an aggregate capability while minimizing total operating costs during the
interval. In other words, given X, |, the approximate approach will assume that
equipment vector ¥, , solves the following 0-1 knapsack problem:

Min 2 C”,,| fn~|

iel,
st 2 r,.”,IY,f”,|> anl' (11)
iel,
Y., _,=0orl; iel, _,.

Decision variables for the next stage will similarly be X, instead of Y, and again we
shall assume that such capability is provided by equipment whose vector Y, solves the
following 0-1 knapsack problem:

Min 2 C:n in

iel,

St 2 r”l ll1 (12)

iel,

Y, =0orl; iel,.

in

With state vector (4,,X,_)), we then define V,(A4,,X,_,) as the “approximate
optimal value function,” which by definition obeys the following recursive relationship:
For I < n <NCLUP:

Vn(An 7anl) = T\//‘\/ln\: 2 Cm in + 2 fCI YI:](l - Yl'l.nfl)

n icl, icl,

+WDn( no niz rlnyl:i’ n)+ I/H+|(A’/7+|’X’7) : (]3)

iel,
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For n = NCLUP:

NENDSP
VH(A”’XH*I)= W 2 Dk(Ak’dA ’O*f/:')* (14)
k=n
where /, is defined by (8). Y, , and Y, by solving (11) and (12) respectively, and
where for 1 < n < NENDSP:

Al =Max| 0.4, +d, — > r, Y, — [ (15)

n+l intin n
iel,
[n (13), (14) and (15). we have written f, instead of f,(A4,.d,,> 2, r,Y;) for conve-
nience purposes. Again, the term 3, ., r, Y, vanishes for n > NCLUP.

V.(A,, X, ) is only an approximation of the minimum total weighted cost from
stage n until the end of the event for the following reasons: First, the equipment
configuration on scene at stages n — 1 and # is restricted to the one that solves (11) and
(12) respectively. Second, it may happen that the combination of equipment sets that
solves (11) and (12) has an actual aggregate capability strictly greater than X, | or X,
respectively. Such a possibility 1s partially ignored in the recursion, which always
considers X, | and X, as state variables (as opposed to .., r, Y, and
2ierln Y, respectively). Computationally, this approach is much more tractable than
the previous one, for it replaces 2V°FQ states with the number of states necessary to
discretize X, _,.

Next we investigate how close the approximate algorithm can approach the opti-
mum produced by the exact algorithm.

3.3, Worst-Case and Average Performance of the Approximate Algorithm

To find out how much the solutions of the approximate algorithm deviate from the
optimal solutions produced by the exact algorithm, we derive a set of relationships
between V,(A,.X,_,) and V*(A4,.Y, ). The only assumptions with regard to the
“realism” of f, and D, are the following: For all n (a) both f, and D, are nondecreas-
ing functions of A, and nonincreasing functions of X, : (b) for any A4, # 0 the ratio of
Af,/AA, is between 0 and | (everything else being equal), and finally (¢) D, is a
nondecreasing function of f,. Under those assumptions, the relationships between
V,(A4,,X,_ ) and V¥(A,.Y, ) can be summarized as follows:

(1) For n=NCLUP, V,(4,.X,_ )= V*A,.Y,_ ) forany 4, X, and ¥,_,.

(2) For 1 < n < NCLUP,

n—

n—1

_ _ NCLUP—1
V:(An > Yu ~l) < Vn(An‘anl) < V:(An' Y,;,l) + 2 2 fci'
‘=n el
for any A,, and for any Y,

n-~1-

(a) /Enfl = Elelnrl.llf] Y/‘nfl;

(b) Y, _, solves the knapsack problem associated with X, _, (11).
(3) As a corollary of (2),

X, ,and Y/ | such that

NCLUP - |
V¥0,0) < V,(0,0) < VFO.O)+ D D fo.
k=1 el

The above relationships can be proven by induction (the proofs are omitted from this
paper due to space limitations but are available from the authors). The implications of
(3) are twofold:

(1) The value produced by the approximate algorithm is bounded from below (as
expected) by the optimal value of the problem and cannot exceed that value by more
than the quantity 337" ) fe,.



1484 HARILAOS N. PSARAFTIS AND BABIS O. ZIOGAS

(i) The approximate algorithm produces oprimal solutions if all fixed dispatching
costs are zero. That is, if fe, =0 fori=1,..., NOEQ, we incur no error by substitut-
ing the detailed equipment information Y, with the more aggregate equipment infor-
mation X,,.

Not unexpectedly, we can see that the approximate algorithm cannot always
guarantee an optimal solution in case some or all fc;’s are nonzero. This is, in a sense,
the “price” one has to pay in order to be able to solve this problem more efficiently
than by using the exact approach. We should however emphasize that the upper
bound of the absolute error of the approximate algorithm (S3<5YP~ 'Z,E,‘fq) is only
a worst-case figure, and a rather loose one for that matter. Indeed, such a worst-case
error can be realized if and only if (a) the approximate algorithm dispatches every
equipment set back and forth at every time stage of the spill and (b) the exact
algorithm recommends no response to that spill. Not only were we unable to concoct a
pathological case in which such a (maximum) error is realized, but more importantly
we proved that irrespective of the values of the inputs and the forms of f, and D, , it is
impossible for the absolute error to be exactly equal to the above upper bound. This
means of course that the upper bound is not tight, and that it is conceivable that a
lower worst-case error could be derived after a more involved analysis. Such an
analysis is, of course, outside the scope of this paper.

The above considerations refer to an investigation of the approximate algorithm
from a worst-case viewpoint. However, such worst-case analyses are of theoretical
interest only because the pathological cases in which such worst-case performance is
realized are usually very unlikely to occur. What is likely to be of more interest to the
algorithm’s user is its performance in typical problem cases “in practice” or “on the
average”. In our case, and from an average performance viewpoint, we feel that the
approximate algorithm is likely to perform very well, for the following reasons: (a) If
weather conditions (and hence, equipment performance) do not fluctuate dramatically
over time, dispatching equipment back and forth several times is a rather unlkely
outcome; (b) In those cases in which multiple equipment dispatching is recommended
by the approximate algorithm because of (say) dramatic changes in weather condi-
tions, such multiple equipment dispatching is likely to be recommended by the exact
algorithm as well. The two algorithms handle fixed dispatching costs in essentially the
same fashion (compare equations (6) and (13)) and are likely to recommend similar
response tactics even under drastic fluctuations in weather conditions over time.
Finally, (¢) in many actual situations, equipment utilization is billed by the hour or by
the day. Dispatching costs are thus included as part of the operating costs, making
fixed dispatching costs much lower than total operating costs or total weighted costs.
All of these reasons argue in favor of the approximate algorithm’s performance.

Based on the above, we decided to use the approximate DP algorithm for solving the
tactical decision problem. To further enhance its computational tractability, and
despite the fact that this was not necessary, the 0-1 knapsack problems within the
recursion were solved heuristically, by using the following “greedy” heuristic for a
problem of knapsack size X, (12):

Step 1. Rank-order all equipment sets i € I, by nondecreasing order of ¢, /r,
ratios.

Step 2. Following the above established order, choose as many sets as necessary
for X, to be satisfied. For those sets, put Y,, = 1. For all other sets, put ¥, = 0.

The greedy heuristic runs in O(|/,|log|1,|) time (by contrast to an exact approach
that runs in O(|7,]X,) time). This heuristic’s worst-case error ratio is equal to

2[61,,Cin . Max( h )

Xn i€, Cin
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That is, the greedy heuristic is expected to perform better in cases X,, is high and/or
the maximum r,, /¢, ratio is low. From an average performance viewpoint the greedy
heuristic is expected to perform very well and it also provides a convenient rule of
thumb in selecting equipment on a cost/benefit basis.

The approximate approach proved viable for problems involving up to 40 different
equipment sets and about 50 time stages. We feel that this can be improved by further
code refinements. Under realistic input values we never observed any symptoms
associated with a worst-case performance (such as sending equipment back and forth
many times). The code was written in FORTRAN and implemented on a VAX
11/782 at MIT.

4. An lllustrative Application

By far the most important illustrative application of the entire MIT Oil Spill Model
has been within the New England regional context. The application necessitated a
comprehensive data collection effort to compile information on all parts of the input
(Figure 1). including data on environmental and economic resources in the area,
geomorphology of the shoreline, cleanup equipment inventory, historical spill data, etc.
In this section we shall present a flavor of the tactical part of this application.

The tactical application has been an “after-the-fact” analysis of actions, events,
costs and damages connected with the Argo Merchant oil spill. On December 15, 1976,
the tanker Argo Merchant, carrying 7.7 million gallons of heavy crude, ran aground 27
nautical miles southeast of Nantucket Island., Massachusetts. Small quantities of oil
started leaking from the grounded tanker, gradually increasing during the next four
days. On December 20, two million gallons escaped from the vessel and. on December
21, the ship broke in two, releasing about three million gallons. The next day the bow
section broke again, releasing the remaining oil.

An extensive mobilization of cleanup equipment, manpower and scientific support
was orchestrated by the U.S. Coast Guard. Fortunately, prevailing northwesterly winds
made the oil drift offshore. Although the mobilization was massive, no oil was
offloaded from the tanker or removed from the sea. After years of research and
litigation, the only documented damage has been the value of the lost oil (estimated at
between $4-$5 million). Although no oil was ever recovered, the total cost of cleanup
equipment mobilization was also high: White and Nichols (1983) estimated the total
cleanup cost of that spill at about $1.8 million (although it is not clear how they
arrived at that figure).

We choose the Argo Merchant spill to test the model for several reasons: First, we
considered it important to run the model with input data that were reasonably well
documented; and, indeed, the literature covering that spill is rich. Second, what
stimulated our interest was not so much an account of the actual event, but the
opportunity we saw in using the model to address important “what if” questions
regarding that spill. We asked the following kinds of questions: What would have
happened if winds in the Argo Merchant oil spill were blowing in the opposite
direction? What if the spill had occurred in the midst of the summer tourist season and
winds carried it on to the New England coast? What if certain categories of cleanup
equipment could or could not be used during the incident? We analyzed the above and
other related questions from the point of view of oil spill trajectory, equipment
dispatching, cleanup costs and damage assessment,

Information on oil outflow and weather conditions was based on many sources, the
two basic ones being Milgram (1977) and Pollack and Stolzenbach (1978). The
equipment database consisted of 40 different integrated equipment sets. All major
equipment actually mobilized or standing by during the incident (such as ADAPTS
systems, etc.) was included. This database was broken down into four major cleanup
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techniques: offloading. mechanical removal with storage, mechanical removal without
storage, and chemical dispersants. The user of the model had the option to choose one
of the above four techniques or any combination of them. Performance and cost data
of the equipment were based on best estimates from experimental results, manufac-
turer specifications and contractor data sheets. A separate subroutine within the
Operational Model was used to calculate the performance of each equipment set as a
function of the performance of its individual components (pumps, storage, etc.), of
prevailing weather conditions, and of oil type. The database included dispatching time
estimates for each of the sets to arrive at the incident site. Damage assessment data
were based on extensive information available on fisheries, tourism, property values,
etc.. for the region of interest. The offloading option was examined in some of the runs
despite the bad weather conditions that prevailed at times (see Ziogas 1982 for
complete details on the above inputs and the assumptions behind them).

Several runs related to the Argo Merchanr case were performed. In this paper we
focus on two major categories: First, runs related to the acrual incident, and, second,
runs related to a worsr-case scenario of that incident. The worst-case variant differed
from the actual case only in three respects: First, wind direction was shifted by 190°
(clockwise), so that the spill could move toward the Massachusetts coast. Second,
occurrence of the incident was changed from winter to summer, so that the tourist
industry would be at its peak. And third, the oil was assumed to be light Diesel No. 2
instead of crude, so that its toxicity would cause more damage.

Several kinds of response were considered for both the actual and worst-case
scenarios. In this paper we present results on the following response options:

(1) The “do-nothing” response, in which the model was forced to “benignly neglect”
the spill (in both actual and worst-case scenarios). Although a politically unacceptable
option, this was in fact the only model option that matched the actual event, since no
oil was recovered. This could also establish an upper bound on the level of damages.

(2) The “optimal™ response, in which the model minimized the sum of cleanup plus
damage costs, with any combination of cleanup techniques allowed (in both actual and
worst-case scenarios).

(3) Same as (2) but with only mechanical removal equipment (with storage) allowed
(in worst-case scenario only).

(4) Same as (2) but with only mechanical removal equipment (without storage)
allowed (in worst-case scenario only).

(5) Same as (2) but with only chemical dispersants allowed (in worst-case scenario
only).

Table 1 summarizes cleanup and damage costs for options (1) and (2) above. From
a “trajectory” viewpoint, the model accurately predicted the movement of the slick in
the “actual” scenario/“do-nothing” option. Figure 2 is a computer graphics output of
the “worst-case” scenario/“do nothing™ option, showing the slick impacting the
Massachusetts and Rhode Island shoreline resource grid system.

Several comments can be made regarding Table 1:

TABLE |

Summarv of Cleanup and Damage Cosis for Two Scenarios and Two
Response Options. For Further Explanations See Text.

Scenario “Actual” “Worst-Case™
Response Oplion (h (2) (h (2)
Cleanup Cost — $0.086™ — $0.034M
Damage Cost $4.6M $0.79 M $34.8M $1.1 M
Total Cost $4.6M $0.876M $34.8M $1.134M
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FIGURE 2. Argo Merchant Spill/Worst Case Scenario: Impact of spill on Massachusetts and Rhode
Island shoreline and island resource grid system.

(1) As expected, damage costs in the worst case scenario were much higher than
those in the actual scenario. Actually, in the worst-case scenario, most of the damage
was inflicted on natural or economic resources, while in the actual case most of the
damage was the value of the lost oil.

(2) In both cases, there was a drastic damage cost reduction when the “do-nothing”
response was replaced by the optimal response recommended by the model. In both
cases the technique that was given priority was offloading. Other techniques such as
mechanical removal were used as backup.

(3) For option (2), the surprisingly lower cleanup cost of the worst-case scenario can
be attributed to the significant increase in the operational efficiency of the offloading
equipment for Diesel Oil No. 2 in comparison to that for crude oil, due to much lower
viscosity.

(4) Offloading seems to be preferred over other techniques for two reasons: First, it
has a higher mechanical efficiency (offloading recovers pure oil while mechanical
removal can recover only an oil/water mixture from the sea). Second, offloading
serves to reduce the overall level of damages by saving the market value of the oil,
which would drop to near-zero levels if oil were to be mixed with water.

Still, since weather conditions could render offloading operations difficult, we
examined a number of alternative response tactics that did not include offloading.
Table 2 summarizes cleanup and damage costs for response options (3), (4) and (5)
(worst case scenario only). Both cleanup costs and damage costs of options (3) and (5)
are higher than those for option (2). Tt is also interesting to note that the model
recommends to “do-nothing” if only mechanical removal equipment with no storage is
available. The absence of adequate storage capacity has frequently proven to be a
severe “bottleneck™ in cleanup operations and these runs highlight the importance of
having all components of an equipment package on scene.

Other issues that have been investigated in conjunction with this spill were:
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TABLE 2

Summary of Cleanup and Damage Costs for the Worst-Case Scenario
and Three Response Options. For Further Explanations See Text.

Response Option (3) (4) (5)

Cleanup Cost $1.118M — $0.484M
Damage Cost $8.3¢ M $34.8M $8.764M
Total Cost $8.458M $34.8M $9.248M

(1) Sensitivity analysis on notification time (NOTFI) or delays: Although damage
and total costs generally increased with longer delays, this was not always the case
with cleanup costs. If delays were too long, damages had already occurred and it did
not pay to mobilize extensively to prevent them. Such an analysis quantifies the
benefits to be derived from an improved monitoring system (one that would reduce the
length of the negotiating process among the spiller, the OSC, and the cleanup
contractors that precedes the initiation of cleanup).

(2) Sensitivity analysis or damage weight W: One of the most interesting observa-
tions for this spill was that the response tactic did not change significantly with changes
in W. For instance, in the worst-case scenario an underestimation of damage costs by
a factor of 20 resulted in the same response tactic. Such “stability” of the problem
solution can be very significant whenever there is uncertainty about the value of
damages (as there usually is). Thus, it may not always be that crucial to be able to
predict the exact dollar value of damages in a spill. In many cases, a simple “order of
magnitude” estimate of that value may be sufficient to determine the optimal response
tactic.

An extensive discussion of those and other runs can be found in Chapter 12 of
Ziogas (1982).

5. Discussion

5.1. On the Damage Function

This work has assumed a general function D, (A4,.d,.X,. f,) for the damages that
accrue between time stages n and n + 1 due to the fact that a portion of oil f, becomes
nonrecoverable during that interval. Any functional form can be used for the damage
function, as long as it satisfies the monotonicity assumptions outlined in §3.3 and is
timewise separable. One can check that the monotonicity assumptions make sense
from a physical point of view. The separability assumption is justified if damages
between n and n + 1 do not depend on damages that have already occurred up to
stage n (that is, if D, is considered as the incremental damage). Special care has been
taken within the Damage Assessment Model (Figure 1) so that damages are computed
in an unambiguously incremental fashion. 1t should be stressed again that in addition
to A,, d,, X, and f,. which are explicit variables, the Damage Assessment Model
implicitly takes into account variables such as type of oil, spill location, weather
conditions, geomorphology and shoreline, environmental and economic resources in
the area etc. Damages are broken down into several main categories (value of lost oil,
commercial resources, noncommercial resources, beaches, tourism and recreation).
The formulation of this paper (which assumes a single weighr W for the total damage)
easily extends to a formulation in which each of the above main categories carries its
individual weight. That increases the flexibility of the model by allowing the user to
put more emphasis on one or a few damage categories versus others and to investigate
the impact of various weighting schemes on the response tactic recommended by the
model.
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5.2. Assembling the Equipment into Sets

A most important aspect of this model is the way in which cleanup equipment is
handled within the algorithm. There is no doubt that the way in which the various
equipment components are assembled into “equipment sets” is critical for the perfor-
mance of the system. In addition, since an individual component (such as a pump)
may be used in more than one combination with other cleanup components (depend-
ing on the particular spill situation), preassigning each component to one and only one
set might reduce flexibility in the overall decision-making process. From our discus-
sions with cleanup technology experts, we feel that while such a risk exists in general,
its consequences can be greatly offset if the assembly of components into self-
contained packages is done intelligently. Past spill history has indicated that it is
critical to work with equipment that is self-contained and well-balanced. For instance,
combining a 2,000 gallon/hr. pump with a skimmer whose aperture width does not
allow a throughput of more than 500 gallons/hr. or which has inadequate storage
capacity, is likely to result in an inefficient operation. The identification of
“bottlenecks” such as the above is done within the Operational Model (Figure 1). In
addition, expert judgement from cleanup contractors and equipment manufacturers
should always be an input to the final assembly of equipment into sets, as it has been
for all realistic applications of the model thus far. Finally, a measure of last resort
(which we do not wholeheartedly recommend) is the following: If it is judged that an
individual component could be used in either one of several equipment sets, then the
model user has the option of having that component assigned to more than one set,
with the understanding that he would have to adjust the problem solution if more than
one of these sets are simultaneously selected by the model.

5.3.  Feedback from the Operational Level

Within the overall model, the most straightforward execution of decisions regarding
a specific spill is a one-pass sequence of the form “tactical decisions first, operational
decisions second” with no opportunity for feedback. However, since operational
decisions (such as what area of shoreline should be protected) may influence the
potential or actual level of damages, feedback of those damages into the tactical level
might be generally warranted. Such a feedback may be in fact necessary if damage
computed at the operational level (using an “optimized” spatial allocation of those
cleanup resources that have been established at the tactical level) are significantly
different from those computed at the tactical level (assuming the aggregate response is
“uniformly” distributed). Such significant disparities between damages evaluated at
those levels are less likely to occur in spills distant from the shoreline, where the main
effort is to recover the bulk of the oil before it hits the coast. By contrast, such
disparities are more likely in near-shore spills, where the emphasis is on the protection
of sensitive areas and where spatial allocation issues are more important. Although no
feedback mechanisms of such nature have been implemented to date within the overall
model, the Tactical Model could be rerun with a new damage weight equal to the
original damage weight, times the ratio of the damages computed at the operational
level divided by the damages computed at the previous tactical run, if, in fact, the latter
ratio is significantly (i.e. order-of-magnitude) different from 1.0. The frequent stability of
the Tactical Model solutions with respect to changes in the damage weight argues that
such iterations between tactical and operational levels would be necessary only rarely
(the reader is referred to Ziogas 1982 and Demis 1984 for more on the optimal spatial
allocation of cleanup resources in an operational situation).

5.4. Uses of the Model

A major use of this model could be for simulation and training purposes. We view
such a use as potentially beneficial not only to persons or organizations using the
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model, but also to the model itself, which could be further improved and refined as a
result of such interaction. To make its use more flexible within that context, we have
structured the computer program implementing the model into four alternative modes
of operation:

(a) the “do-nothing” mode, where the model simply tracks down the spill and
evaluates damages;

(b) the “manual” mode, where the entire response tactic Y,, is entered interactively
by the user (nothing is optimized);

(c) the “semiautomatic” mode, where the user enters interactively only the aggregate
cleanup capability X, and the model chooses equipment by solving the corresponding
knapsack problem (12); and finally

(d) the “automatic” mode, where the model solves the DP recursion as described in
§3. The last mode can function either in a “static” fashion (where no input is updated
in time) or in a “dynamic” fashion (where inputs are dynamically updated in time).

Once mastered and refined, the model could be used to assist On Scene Coordina-
tors with their actual responses to spills. A typical use of the model in this mode would
involve running the algorithm several times to account for uncertainties in problem
inputs, such as weather conditions, oil outflow rate, etc. In such a way the human
decision-maker would be able to assess quickly the consequences of various scenarios
and response options on a cost/benefit basis.

The Argo Merchant application presented in §4 has illustrated yet another potential
use of this model: performing ‘““after-the-fact” analyses of oil spill cleanup decisions.
Such analyses of both the actual spill scenario and its variants may be used to
investigate the merits of response tactics recommended by the model versus those that
were actually implemented.

Similar analyses may be used to address “strategic” or “policy” issues. Suppose for
instance, that after analyzing a number of serious spills, the model indicated that
millions of dollars in damages could have been averted had cleanup operations started
six hours earlier than they actually did. Such a result could justify new Federal policies
that would shorten the time between a spill and initiation of cleanup operations.

As another example, suppose that a massive spill occurred in adverse weather
conditions and the model indicated that a “do-nothing” response would result in
$1 million in damages. Under existing legislation, such a response tactic is both illegal
and politically unacceptable. Suppose, however, that the model also indicated that a
“do-everything” response, that is, a response that minimized damages irrespective of
cleanup costs (weight W — + c0), would reduce damages by only $0.1 million and
would add $1 million in cleanup costs. Now there would be a way to assess whether
the reduction in damage costs is enough to justify the expenditure for cleanup costs.
Given that funds for cleanup operations are by no means unlimited, such exercises of
the model could help to shape and justify more efficient spill cleanup legislation, under
which pollution combat funds could be spent in more effective ways.

Similar uses of the model could shed more light on other important issues, such as
the use of chemical dispersants, the use of private contractors versus Federally owned
equipment (which is usually much cheaper), or the question of when to stop cleanup
operations (or, “how clean is clean?”). With respect to the last issue, the model clearly
shows the diminishing returns associated with prolonging cleanup “until the last drop
of oil is removed”. Under existing legislation, however, the decision of when to
terminale cleanup is not an economic decision.

Overall, it is our opinion that the value of the model developed here lies not so much
in its ability to capture the most significant factors of a very complex problem and
then solve it, but rather in its ability to answer important “what if” questions so as to
provide further insight into the spill cleanup process. The use of the “what if”
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capability of the model is particularly helpful in problems where reliable input data do
not exist. Data reliability is usually a serious problem in all oil spills but is definitely
not a reason for not conducting analyses or not running models. Our model can be
used to determine which sets of input data are important in the decision-making
process (and therefore guide future data collection efforts) and which sets are less
important or irrelevant.’

'Support for the work described in this paper (MIT Oil Spill Model) has been provided by the National
Oceanic and Atmospheric Administration, the U.S. Coast Guard, the U.S. Navy, the Commonwealth of
Massachusetts, the Doherty Foundation. JBF Scientific Corporation, the Spill Control Association of
America, Texaco and Petro-Canada. We would like to thank Warren E. Walker, William A. Wallace and
three anonymous reviewers for their comments on two earlier versions of the paper.
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