

11 January 2013. Gothenburg

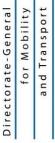
Fleur BREUILLIN, DG MOVE

Unit D1 – Maritime transport and logistics

- Why SuperGreen ?
 - On the one hand: TEN-T developments
 - On the other hand: green technologies and ICT developments
 - How to apply the second ones in the first ones : green corridors concept
- Potential use of the results
- What next?

- Why SuperGreen ?
 - On the one hand: TEN-T developments
 - On the other hand: green technologies and ICT developments
 - How to apply the second ones in the first ones: green corridors concept
- Potential use of the results
- What next?

TEN-T developments


- TEN-T policy review => proposal for new TEN-T guidelines (19 October 2011):
- A dual layer approach (core network / comprehensive network)
- A corridors' approach : rail freight corridors, ERTMS corridors or « green corridors » => multi-modal corridors
- Funding:
 - « Connecting Europe Facility » for the core network (€21.7 billion + € 10 billion from Cohesion Fund);
 cohesion fund / ERDF for the comprehensive network

Under discussion at Council and Parliament

- Why SuperGreen ?
 - On the one hand: TEN-T developments
 - On the other hand : green technologies and ICT developments
 - How to apply the second ones in the first ones: green corridors concept
- Potential use of the results
- What next?



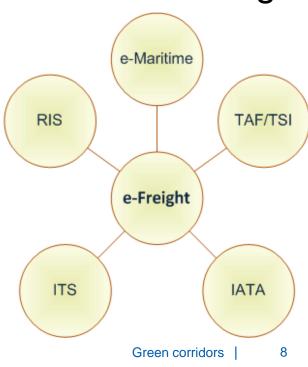
Green technologies and ICT developments

Green technologies

- Development and implementation of :
 - Clean, safe and silent vehicles for all modes (including new materials, new propulsion systems).
 - A sustainable alternative fuels strategy including also the appropriate infrastructure.
 - Carbon footprint calculators / common EU standards

Green technologies and ICT developments

ICT


Modal initiatives : ITS, TAF-TSI, e-Maritime, RIS

E-Freight: facilitate transport information exchange

along the whole supply chain

Build the appropriate framework to streamline the electronic flow of information associated with the physical flow of goods

- Public consultation until 17/01
- Initiative planned to be released this year.

- Why SuperGreen ?
 - On the one hand: TEN-T developments
 - On the other hand: green technologies and ICT developments
 - How to apply the second ones in the first ones: green corridors concept
- Potential use of the results
- What next?

Logistics Action Plan 2007

Concept launched in action n°5 « green » transport corridors for freight

Green Corridors are a European concept denoting long-distance freight transport corridors where :

- advanced technologies,
- innovative management models
- co-modality, including :
 - ✓ adequate transhipment facilities at strategic locations
 - ✓ integrated logistics concepts (synchromodality).

are used to achieve energy efficiency and reduce environmental impact.

- "Roadmap to a Single European Transport Area.
 Towards a competitive and resource efficient transport system."
- Target: -60% of GHG emissions by 2050
- Confirms the necessity to develop green freight corridors

Goal n°3: 30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, and more than 50% by 2050, facilitated by **efficient and green freight corridors**.

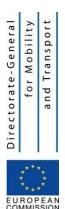
Enlarges the view to multimodal freight corridors :

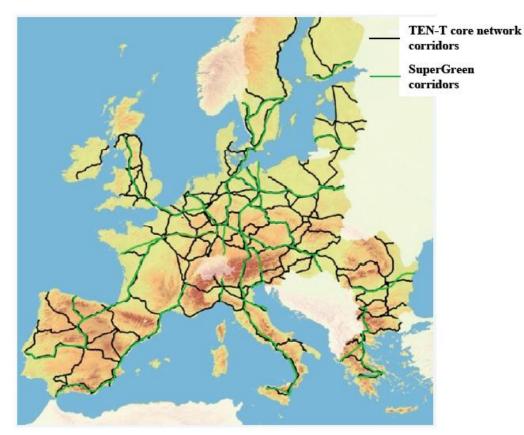
Initiative n°35 (multimodal freight corridors for sustainable transport networks)

What is missing for the development of green corridors?

 the precise definition of a green corridor through KPIs (key performance indicators). These KPIs need to cover all aspects related to transport operations and infrastructure (emissions, internal and external costs).

a first assessment of corridors and technologies





- SuperGreen final workshop
 - Why SuperGreen ?
 - Potential use of the results
 - What next?

Where could results be used?

- Exchange of best practices
- Policy recommendations

⇒ Representative results

Green corridor as part of core network corridors

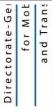
Where could results be used?

KPIs

	KPI	Output unit			
Efficiency	Absolute costs	€/ton			
	Relative costs	€/ton-km			
Service quality	Transport time (or speed)	Hours (or km/h)			
	Reliability	On-time deliveries / total nb of shipments			
	ICT applications	Graded scale: availability, integration & functionality of ca tracking & other services			
	Frequency	Number of services per year			
	Cargo security	Security incidents / total nb of shipments			
	Cargo safety	Cargo safety incidents / total nb of shipments			
Environmental sustainability	CO2-eq emissions	g/ton-km			
	NOx emissions	g/1,000 ton-km			
	SOx emissions	g/ ton-km			
	PM emissions	g/1,000 ton-km			
Infrastructural sufficiency	Congestion	Hours of delay in average /ton-km			
	Bottlenecks	Graded scale : Nb & category			
Social	Corridor land use	Share of distance per area type			
	Traffic safety	% of traffic safety incidents			
	Noise	Share of distance above level			

=> definition of a green corridor (a label ?) + follow-up (corridor development plans : define objectives / plan the monitoring of projects)

Where could results be used ?

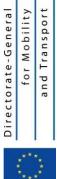

Benchmarking :

of corridors:

Corridor	Mode	Cost (€/tkm)	Av. speed (km/h)	Reliability (%)	Frequency (no year)	CO ₂ (g/tkm)	SOx (g/tkm)
Brenner	Intermodal	0.03-0.09	9-41	95-99	26-624	10.62-42.11	0.02-0.14
	Road	0.05-0.07	19-40	50-99	104-2.600	46.51-71.86	0.05-0.08
	Rail	0.05-0.80	44-98	50-100	208-572	9.49-17.61	0.04-0.09
	SSS	0.04	23	100	52	16.99	0.12
Cloverleaf	Road	0.06	40-60	80-90	4.680	68.81	0.09
	Rail	0.05-0.09	45-65	90-98	156-364	13.14-18.46	0.01-0.02
Nureyev	Intermodal	0.10-0.18	13-42	80-90	156-360	13.43-33.36	0.03-0.15
	SSS	0.05-0.06	15-28	90-99	52-360	5.65-15.60	0.07-0.14
Strauss	IWT	0.02-0.44	-		•	9.86-22.80	0.01-0.03
Mare Nostrum	SSS	0.003-0.20	17	90-95	52-416	6.44-27.26	0.09-0.40
	DSS	-	-	-	-	15.22	0.22
Silk Way	Rail	0.05	26	-	-	41.00	
	DSS	0.004	20-23	-	- 1	12.50	-

of ICT and green technologies:

Technology name		Corridor	Mode of Transport	SuperGreen KPI	Impact compare to baseline [%]
Hybrid trucks	VE03	Brenner	Road	Cost [euro/tn.km]	6% to 7%
				CO ₂ emissions [gr/tn.km]	25%
		Cloverleaf	Road	Cost KPI [euro/ tn.km]	13% to 23%
				CO ₂ emissions [gr/tn.km]	-49% to 25%
				SOx emissions [gr/tn.km]	10% to 26%
Aerodynamic drag improvements	VE29	Brenner	Road	Cost [euro/tn.km]	3% to 4%
				CO ₂ emissions [gr/tn.km]	10% to 26%
				SOx emissions [gr/tn.km]	13% to 25%
		Cloverleaf	Road	Cost KPI [euro/ tn.km]	2% to 8%
Exhaust abatement systems	EN21	Mare Nostrum	Maritime	Cost [euro / tn.km]	-4% to -1%
				SOx emissions [gr/ tn.km]	90% to 96%
		Strauss	IWW	Cost KPI [euro/tn.km]	0% to 1%
		Strauss		CO ₂ emissions [gr/tn.km]	-5% to 8%
	FU08	Nureyev	Maritime	CO ₂ emissions [gr / tn.km]	10% to 20%
LNG				SOx emissions [gr/ tn.km]	98% to 100%
LNG		Strauss	IWW	CO ₂ emissions [gr / tn.km]	10% to 19%
				SOx emissions [gr/tn.km]	95% to 100%
Route optimisation systems	NA16	Strauss	IWW	Cost KPI [euro/ tn.km]	1% to 1%
				CO ₂ emissions [gr/tn.km]	10% to 10%
				SOx emissions [gr/tn.km]	10% to 10%
EREX	BP13	Cloverleaf	Railways	Cost KPI [euro/ tn.km]	1% to 100%
Braking energy recovery & On-board energy storage systems	LU13 & LU14	Silkway	Railways	CO ₂ [gr/ tn.km]	30% to 40%


- => recommendations / promotion of the technologies and practices with the most positive impact
- => impact assessment of European policies, e.g. e-Freight

- SuperGreen final workshop
 - Why SuperGreen ?
 - Potential use of the results
 - What next ?

- Implementation on infrastructures : TEN-T developments
- Implementation on logistics operations
- Impact assessments of European policies

Thank you for your attention

